EXPLORATORY DEVELOPMENT OF DESIGN DATA ON JOINTS USING FATIGUE-IMPROVEMENT FASTENERS

BATTELLE COLUMBUS LABORATORIES 505 KING AVENUE COLUMBUS, OHIO 43201

MAY 1976

TECHNICAL REPORT AFML-TR-76-52 FINAL REPORT FOR PERIOD JUNE, 1973 - FEBRUARY, 1976

Approved for public release; distribution unlimited

20080815 263

AIR FORCE MATERIALS LABORATORY
AIR FORCE WRIGHT AERONAUTICAL LABORATORIES
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

This report has been reviewed by the Information Office (IO) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

This report has been reviewed and is approved for publication.

ALTON W. BRISBANE Project Engineer

Engineering and Design Data

W Brisbane

FOR THE COMMANDER

A. OLEVITCH, Chief

Materials Engineering Branch

Systems Support Division

Air Force Materials Laboratory

albert Olevitch

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

AIR FORCE - 17 SEPTEMBER 76 - 350

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION	PAGE	BEFORE COMPLETING FORM		
1. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER		
AFML-TR-76-52				
	EXPLORATORY DEVELOPMENT OF DESIGN DATA ON JOINTS USING FATIGUE-IMPROVEMENT FASTENERS			
7. AUTHOR(s)		8. CONTRACT OR GRANT NUMBER(s)		
S. C. Ford		F33615-73-C-5111		
9. PERFORMING ORGANIZATION NAME AND ADDRESS Battelle's Columbus Laboratories 505 King Avenue Columbus, Ohio 43201		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS Project No. 7381 Task No. 738106		
 CONTROLLING OFFICE NAME AND ADDRESS Air Force Materials Laboratory/MXF 	7	May, 1976		
Wright-Patterson Air Force Base, C		13. NUMBER OF PAGES 193		
14. MONITORING AGENCY NAME & ADDRESS(if different DCASO, Columbus Building 1, Section 1 Defense Construction Supply Agency Columbus, Ohio 43215		15. SECURITY CLASS. (of this report) Unclassified 15a. DECLASSIFICATION/DOWNGRADING SCHEDULE		
17. DISTRIBUTION STATEMENT (of the abstract entered	in Block 20, if different fro	om Report)		
18. SUPPLEMENTARY NOTES				
19. KEY WORDS (Continue on reverse side if necessary a Fastenings Fatigue Fatigue Life Fatigue Tests Fatigue-Improvement Fasteners	Interference Joints Fastened Joi Aluminum Joi Titanium Joi	nts nts nts		
20. ABSTRACT (Continue on reverse side if necessary en This report presents fatigue design fasteners. The major emphasis is of 7075-T73 and T7351 aluminum, as using the TaperLok, HiTigue, and so The study revealed that the fatigualized holes were similar to those Tigue fastener systems. A method is proposed along with data requires	gn data on joints placed upon low- ssembled with PH1 split-sleeve mand ue properties of of fastener join of condensed dat	using fatigue-improvement load transfer specimens made 3-8Mo and Ti-6Al-4V fasteners relized hole-fastening systems fastener joints with mandrets with the TaperLok and Hiapresentation in MIL-HDBK-5		

DD 1 JAN 73 1473

EDITION OF 1 NOV 65 IS OBSOLETE

AD A030275

FOREWORD

The research reported herein was conducted by Battelle's Columbus Laboratories for the Materials Engineering Branch, Systems Support Division, Air Force Materials Laboratory, Wright-Patterson Air Force Base, Ohio. The work was conducted under Contract No. F33615-73-C-5111, Project No. 7381, Task No. 738106. Alton W. Brisbane of AFML/MXE was the project engineer.

The study was conducted during the period June 1, 1973, to February 2, 1976. The program was conducted within the Structual Materials Section, Harold Mindlin, Manager. Stephen C. Ford was the principal investigator. The author wishes to express his appreciation to David A. Utah, researcher, and Lee R. Taggart, technician, Structural Materials Section for their assistance and meticulous attention to detail during the conduct of this program. This report was submitted by the author on May 28, 1976.

TABLE OF CONTENTS

																							Page
1.	INTRO	DUCTION																					1
2.	PROGRA	AM OBJEC	TIVES																				2
3.	FASTE	NER AND	JOINT	SEL	ECTI	ON																	3
		Fastene																					3
		3.1.1.	Tape																				3
		3.1.2.	Stra																				4
		3.1.3.	Stra	ight	Sha	nk,	Ma	ind	re1	12	ed	H	lo1	e									5
		3.1.4.	Mate	ria1	Se1	ect	ior																6
																							6
		3.1.5.	Faste	ener	Con	112	gura	LLI	on			•	•										
		3.1.6.	Diame	eter	and	Gr	ip																6
		3.1.7.	Finis	sh a	nd I	uhr	ica	ti	on														7
		3.1.8.	Insta	alla	tion	Me	etho	ds		•	•	•	•	•				•		•		•	8
	3.2.	Fastene	d Join	nt S	peci	mer	ıs .																9
					1													-					
						_																	10
		3.2.1.	Conf	igur	atio	n S	ele	ect	ior	1					•								10
		3.2.2.	Join																				10
		3.2.2.	JOIN	c rice	CCLI	aı	DC.		CIC	,11	•	•	•	•	•	• •	•	•	•	•	•	•	10
4.	EXPER	IMENTAL	PROGRA	AM.																	1		15
•	Ditt Dit	1110111111	11100111		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
	4.1.	Stress	Ratio	, R																			15
				_																			
	4.2.	Primary	Join	t Co	nfig	ura	itic	n							•								16
	, .		-																				
	4.3.	Primary	Faste	ener	Con	tig	gura	iti	on				•										16
	, ,	0	C 11		1 1																		11
	4.4.	Summary	of Va	arıa	bles																		16
	, -		. 1 .	73			c -																10
	4.5.	Statist	ical .	rea	tmen	tc) I	at	a														18
		/. E 1	Eat.		C																		10
		4.5.1.																					18
		4.5.2.	Secon	ndar	y Va	ria	ble	T	est	S													20
		/																					
	4.6.	Test Ma	trix																				22
	, -				1 1																		0.5
	4.7.	Test Eq	uipmer	nt a	nd E	nvi	ror	ime	nt	•	•												25
-	CDECT	WEN DOED	ADAMT	TAT																			20
5.	SPECI	MEN PREP	AKAII	JN .					•				•	•									26
	5.1.	Spacino	n P1a-	alco																			26
	3.1.	Specime	ii DIai	CAL		•			•					•	•							•	20
	5.2.	Fay Sur	face '	Trea	tmen	t			•								-			-			26
		,									•	*	•	-			•	•	•	•	•	•	20
	5 3	Hole Pr	enaral	tion																			26

TABLE OF CONTENTS (Continued)

																						Page
		5.3.1. 5.3.2.	Tapered HiTigue	Holes																		27 27
		5.3.3.	Mandreli	zed Ho	les	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	28
	5.4.	Specime	n Support	s									•					•				29
	5.5.	Specime	n Identif	icatio	n.					•						•				•		31
6.	METHO	DS OF DA	TA PRESEN	TATION											•					•		32
	6.1.	Data An	alysis Fo	rmat .											•							32
	6.2.	Curve-F	itting Mo	dels .								•			•			•				33
7.	DISCU	SSION OF	FATIGUE	RESULT	S.				•			•			•							33
	7.1.	S-N Cur	ves					•												•		34
		7.1.1.	Aluminum	Low-L	oad-	Tra	ans	sfe	er	Jo	ir	nts	3									34
		7.1.2.	Aluminum																			35
		7.1.3.	Aluminum																			36
		7.1.4.	Titanium																			36
	7.2.	Conside	ration of	Varia	bles																	37
		7.2.1.	TaperLok	Secon	dary	. 17:	ar-	iał	10													37
		7.2.2.	HiTigue		-																	37
		7.2.3.	Mandreli																			38
		7.2.4.	Titanium																			39
	7.3.	Summary	of Fatig	ue Res	ults		•						•			•						40
8.	STATI	C-JOINT	TESTS										•									40
9.	SHEET	MATERIA	L PROPERT	IES .				•														41
10.	RECOM	MENDED P	RESENTATI	ON FOR	MAT																	41
11.	RECOM	MENDED D	ATA GENER	ATION	PROG	RA	M															42
12.	CONCL	USIONS A	ND RECOMM	ENDATI	ONS	•	•		•	•				•		•	•					45
13.	REFER	ENCES .																				46

TABLE OF CONTENTS (Continued)

	Page
APPENDIX A	
JOINT FATIGUE TEST RESULTS	49
APPENDIX B	
FATIGUE LIFE CURVES FOR PRIMARY VARIABLES	105
APPENDIX C	
FATIGUE LIFE CURVES FOR SECONDARY VARIABLES	141
APPENDIX D	
STATIC JOINT STRENGTH RESULTS	165
APPENDIX E	
SHEET MATERIAL PROPERTIES	171
APPENDIX F	
ANALYSIS OF THE HIGH LOAD TRANSFER JOINT SPECIMEN	183
APPENDIX G	
DATA ANALYSIS AND PLOTTING COMPUTER PROGRAM	189

LIST OF ILLUSTRATIONS

		Page
Figure 1.	Sheet Strength (No-Load) Specimen	11
Figure 2.	Low-Load-Transfer (Reverse Dogbone) Test Specimen .	12
Figure 3.	Modified Medium-Load-Transfer (1½ Dogbone) Specimen	13
Figure 4.	High-Load-Transfer (Simple-Lap-Joint) Specimen	14
Figure 5.	Constant Life Diagrams	17
Figure 6.	Mean Curve and Statistical Confidence Bands	21
Figure 7.	Antibuckling and Bending Restraint	30
Figure 8.	Proposed MIL-HDBK-5 Presentation Format	43
Figure 9.	Constant Life Diagram	44
Figure A-1.	Fatigue Failure Modes	49
Figure A-2.		51
through	Failed Aluminum Low-Load Transfer Specimen	through
Figure A-5.		53
Figure B-1.		105
through	Fastener Fatigue Improvement Data	through
Figure B-36.		140
Figure C-1.		142
through	Fastener Fatigue Improvement Data	through
Figure C-23.		164
Figure E-1.		174
through	Sheet Material Data	through
Figure E-3.		176
Figure F-1.	Bending Restraint System and Strain Gage Locations.	184
Figure F-2	Strain Gage Results for High-Load-Transfer Joint	106

LIST OF TABLES

		Page
Table 1.	Fastener Designations	7
Table 2.	Fastener Finish and Lubrication	7
Table 3.	Fastener Interference and Cold Work Levels	8
Table 4.	Installation Torque	9
Table 5.	Specimens for Determination of Joint Material Fatigue Properties	22
Table 6.	Joint Test Program for One Fastener System	24
Table 7.	TaperLok Interference Values	27
Table 8.	HiTigue Hole Sizes	27
Table 9.	HiTigue Interference Values	28
Table 10.	Mandrelized Cold Work Levels	28
Table 11.	Mandrelized Hole Sizes Before Cold Working	28
Table 12.	Mandrelized Hole Sizes After Cold Working and Reaming	29
Table 13.	Final Fastener Interference Levels for Mandrelized Holes	29
Table A-1.		54
through	3/8 Inch Steel TaperLok, 7075-T7351 Low-Load Transfer Specimens	through
Table A-4.	• • • • • • • • • • • • • • • • • • • •	57
Table A-5.	3/16 Inch Steel TaperLok, 7075-T73 Low-Load Transfer Specimens	58
Table A-6.	3/8 Inch Steel TaperLok, 7075-T7351 High-Load Transfer Specimens	59
Table A-7.	3/8 Inch Steel TaperLok, 7075-T7351 High-Load Transfer Specimens	60
Table A-8.	3/8 Inch Titanium TaperLok, 7075-T7351 Low-Load Transfer Specimens	61
Table A-9.	3/8 Inch Titanium TaperLok, 7075-T7351 Low-Load Transfer Specimens	62

LIST OF TABLES (Continued)

		Page
Table A-10.	3/8 Inch Titanium TaperLok, 7075-T73 Low-Load Transfer Specimens	63
Table A-11.		64
through	3/8 Inch Steel TaperLok, 6A1-4V M.A. Low-Load Transfer Specimens	through
Table A-13.		66
Table A-14.		67
through	3/8 Inch Steel TaperLok, 7075-T7351 Low-Load Transfer Specimens	through
Table A-17.		70
Table A-18.		71
through	3/8 Inch Steel HiTigue, 7075-T7351 Low-Load Transfer Specimens	through
Table A-20.		73
Table A-21.	3/8 Inch Steel HiTigue, 7075-T73 Low-Load Transfer Specimens	74
Table A-22.	3/16 Inch Steel HiTigue, 7075-T73 Low-Load Transfer Specimens	75
Table A-22A.	1/2 Inch Steel HiTigue, 7075-T7351 Low-Load Transfer Specimens	76
Table A-23.	3/8 Inch Steel HiTigue, 7075-T7351 High-Load Transfer Specimens	77
Table A-24.	3/8 Inch Steel HiTigue, 7075-T7351 High-Load Transfer Specimens	78
Table A-25.		79
through	3/8 Inch Titanium HiTigue, 7075-T7351 Low-Load Transfer Specimens	through
Table A-27.		81

LIST OF TABLES (Continued)

		Page
Table A-28.	3/8 Inch Steel HiTigue, 6A1-4V M.A. Low-Load Transfer Specimens	82
Table A-29.	3/8 Inch Steel HiTigue, 6A1-4V M.A. Low-Load Transfer Specimens	83
Table A-30.	3/8 Inch Titanium HiTigue, 6A1-4V M.A. Low-Load Transfer Specimens	84
Table A-31.		85
through	3/8 Inch Steel HiTigue, 7075-T7351 Low-Load Transfer Specimens	through
Table A-34.		88
Table A-35.	3/8 Inch Split Sleeve, 7075-T7351 Low-Load Transfer Specimens	89
Table A-36.	3/8 Inch Split Sleeve, 7075-T7351 Low-Load Transfer Specimens, Minimum Interference Conditions	90
Table A-37.		91
through	3/8 Inch Split Sleeve, 7075-T7351 Low-Load Transfer Specimens	through
Table A-42.		96
Table A-43.	3/8 Inch Split Sleeve, 6A1-4V M.A. Low-Load Transfer Specimens	97
Table A-44.	3/8 Inch Split Sleeve, 6A1-4V M.A. Low-Load Transfer Specimens	98
Table A-45.		99
through	3/8 Inch Split Sleeve, 7075-T7351 Low-Load Transfer Specimens	through
Table A-48.		102
Table A-49.	3/8 Inch Split Sleeve, 6Al-4V M.A. Low-Load Transfer Specimens	103
Table D-1.	Static Joint Strength of Low-Load Transfer Specimens	165
Table D-2.	Static Joint Strength of High-Load Transfer	167

LIST OF TABLES (Continued)

		Page
Table D-	3. Static Joint Strength of Aluminum Medium-Load Transfer Specimens	169
Table D-	4. Static Joint Strength of Aluminum 3/16-Inch Diameter Fastened Specimens	170
Table E-	1. Sheet Material Fatigue Properties, No-Hole Specimens, 7075-T73, T7351 Aluminum (R = 0)	171
Table E-	2. Sheet Material Fatigue Properties, Open-Hole Specimens, 7075-T73, T7351 Aluminum (R = 0)	172
Table E-	 Sheet Material Fatigue Properties, Open-Hole Specimens, 6AL-4V, Mill Annealed (R = 0)	173

SUMMARY

This report presents the results of a program directed toward the development of design data on joints using fatigue-improvement fasteners. The program objectives were as follows:

- Develop statistically confident joint fatigue design data for three fastener systems (tapered-shank, TaperLok; straight-shank, HiTigue; straight-shank, mandrelized hole).
- Define those fastener or joint variables which affect the joint fatigue life using the three systems mentioned.
- Devise a concise presentation format compatible with MIL-HDBK-5 philosophy.
- Define data requirements (both type and quantity) for possible future inclusion in MIL-HDBK-5.

The results of this effort can be summarized as follows:

- The three fastener systems studied in this program provide similar low-load transfer joint fatigue properties when tested in well prepared interference holes. Although trends were apparent, similar conclusions could not be drawn for medium- and high-load transfer joints due to reduced data quantities.
- Positive or negative effects upon the nominal conditions above are observed when: (1) the interference level is changed, (2) the t/D ratio is reduced, and (3) the joint material or fastener head configuration is changed.
- A stress parameter, $(S_{max}\sqrt{1-R})$, can be used to obtain data collapse about the stress ratio, R.
- The above parameter makes it possible to present an S-N type curve and confidence bands to statistically depict a large quantity of data.
- Based upon the results of this program, candidate data requirements have been identified for future programs for proposed inclusion in MIL-HDBK-5

1. INTRODUCTION

The problem of fatigue of aircraft structures has been present since the first airplane was flown and has increased in magnitude with every advance in design technology. Today's level of design sophistication, coupled with ever increasing weight and cost concerns, has reclassified fatigue considerations from the problem to the design-parameter category.

Prior to the early 1960's, only token consideration was given to the fatigue life of fastened joints. However, the experience of recent years has made it apparent that a great majority of aircraft fatigue failures have occurred at, or passed through, fastener holes. As a result, more and more emphasis has been placed upon the development of fastened joint fatigue data for use in specific applications. To accomplish this, numerous simulated joint configurations and designs have been developed and evaluated for specific applications.

The increased emphasis on development of fastened joint fatigue data, coupled with a multitude of joint designs and materials, has brought about a vast quantity of fatigue data--most of which cannot be compared on a one-on-one basis. Recently, the Fastener Test Development Group of MIL-STD-1312 (Fasteners, Test Methods) prepared a proposed test, "Shear Joint Fatigue-Constant Amplitude", which defines specific joint configurations, materials, and test procedures. Implementation of these test requirements will provide the stepping-off point for the generation of a one-on-one comparable data base for the fatigue life of fastened joints.

For many years, MIL-HDBK-5⁽¹⁾ (containing fatigue design data for materials) has been considered the central depository of design data by aerospace engineers. In keeping with the intent of this document, it is the desire of the Air Force to include fatigue design data for fastened joints. If this goal is achieved, the aerospace design engineer will have, for the first time, comparable joint fatigue design data for several fastener system concepts. This will further facilitate fastener system selection, as sufficient information will be immediately available to make decisions based on comparative performance, cost, and producibility.

The research program reported herein was initiated by the Air Force to explore the ramifications and variables involved with the development of design data on joints using fatigue-improvement fasteners. Specifically, the objectives of the program were to (1) develop statistically comparable joint fatigue data for three fastener systems, (2) devise a MIL-HDBK-5 compatible presentation format, and (3) define data requirements (both type and quantity) for future inclusion in the Handbook. The approach was to develop baseline S-N type data for what were considered major variables and then test secondary variables against those baseline conditions to determine if there was any effect. Various data collapse parameters were considered along with data presentation formats.

Reported herein are the fastener and material selection process, joint specimen details, and the experimental matrix. The specimen preparation process is described, as well as methods of data presentation. The results of the experimental portion of the program, including data analysis are discussed. Recommendations are made for data presentation format and data requirements for future programs.

Appendix A contains the fatigue test results; the computer plotted curves resulting from the analyses are presented in Appendices B and C.

Static joint test results and sheet material properties are documented in Appendices D and E, respectively. Appendix F contains the bending and load-transfer analysis of the high-load transfer joint configuration. Appendix G contains a listing of the computer programs used in the data analysis and plotting portion of the program.

2. PROGRAM OBJECTIVES

The major objective of the research program reported herein was the development of fatigue data for fastened joints utilizing fatigue-improvement-type fasteners. As the Air Force desired to include this type of data in Chapter 8 of MIL-HDBK-5, several secondary objectives were to be attained. First, a fatigue-data presentation format was to be devised which would provide airframe designers with a sound criterion for optimum fastener selection for fatigue-critical joints. Second, the presentation format had to be

compatible with the general philosophy of including only statistically confident data in MIL-HDBK-5. Finally, a standard data generation program had to be formulated to permit the inclusion of data for other fastener systems in MIL-HDBK-5 in the future. The fatigue data generation program had to take into account variables determined to be critical in this program as well as allowing enough flexibility so that future fastener designs could be evaluated fairly for comparison with current fastener designs.

3. FASTENER AND JOINT SELECTION

The experimental portion of the program was designed to accomplish a two-fold purpose: (1) develop an adequate quantity of joint fatigue data to provide a statistically confident presentation for inclusion in MIL-HDBK-5, and (2) investigate those fastener, fastener-installation, and joint variables which might be critical to the data presentation. The details and rationale concerning the selection of fastener systems and fastened joint specimens for use in the program are discussed in the following subsections.

3.1. Fastener Selection

Since this program was exploratory in nature, it was critical to select several fastener systems which were generally accepted and in use because of their fatigue-improvement qualities. In addition, it was desirable to investigate systems which had different fatigue-improvement mechanisms or installation processes. As a result, three fastener categories were selected for investigation; namely, the tapered-shank interference-fit, the straight-shank interference-fit, and straight-shank mandrelized-hole concepts.

3.1.1. Tapered Shank, Interference Fit

The TaperLok system was a logical choice for this program as it is essentially the forerunner of the fatigue-improvement fasteners. It probably has the largest history of usage and fatigue data accumulation of any of the fatigue-improvement systems. This system relies upon the fatigue-improvement

mechanism of reducing alternating stress during cyclic loading, which has been well documented by Smith $^{(2)}$ and others.

The fastener is manufactured with a ½-inch-per-foot taper on the shank which allows it to be pulled or pushed into a similarly tapered hole. The hole is drilled and reamed undersize to provide the desired level of interference between the pin and hole when the fastener is properly installed. The geometry of the system provides an easy determination of the interference level as a precision inspection pin or fastener will protrude 0.048 inch prior to installation for each 0.001 inch of interference after installation. This system requires careful control of the hole preparation process as the tapered reamer cuts along the full depth of the hole and chip accumulation or the wrong selection of feeds, speeds, and lubricants can cause fluted or out-of-round holes which in turn reduce the effective interference level and, hence, reduces fatigue life (3).

3.1.2. Straight Shank, Interference Fit

The second fastener system selected for investigation was the HiTigue, straight-shank interference-fit fastener. This system has gained a great deal of attention and primary usage in fatigue-critical aircraft structure. The system combines two fatigue-improvement principles in its operation--prestressing and interference fit. In addition to a slightly oversize shank (facilitating the insertion of the fastener into an interference-fit hole without causing or allowing the threaded area of the pin to come in contact with the hole which could cause scraping and galling), this fastener has a slight bead or ball section at the thread-to-shank juncture of the bolt. It is claimed that this bead accomplishes seven functions: (1) because the hole diameter is smaller than the shank diameter, it preloads the hole to provide beneficial residual compressive stress; (2) it cold works the hole; (3) it burnishes or polishes the hole much like the mandrelizing technique developed by Speakman (4); (4) the installation process sizes the hole and essentially eliminates the problem of out-of-round holes and, hence, provides a constant degree of interference; (5) because the bead is larger than the shank diameter and leads the shank into the hole, the bead absorbs the majority of the frictional loading and, hence, protects the corrosion-resistant

and lubricant coatings deposited on the shank of the pin; (6) because the bead is small in size and essentially a sphere imposed on a cylindrical shank, its contact area with any portion of the hole is small, thus reducing installation loads and the likelihood of galling the hole during installation; and (7) the combination of cold working of the hole and leaving the hole in an interference-fit condition provides a fuel-tight sealed joint.

As with the tapered-shank fastener, the precision of the hole preparation process is a critical factor in controlling the final interference condition and, therefore, fatigue life. Although some cold working and burnishing of the hole is accomplished during fastener installation, it is believed that the interference fit (i.e. reduction of alternating stresses) is the major mechanism for fatigue-life improvement.

3.1.3. Straight Shank, Mandrelized Hole

The third fastener system involves the combination of a straightshank fastener assembled in a cold-worked hole. In this case, one of the benefits considered by several aircraft companies is that no special proprietary fastener is necessary. The hole is sized, as described subsequently, to provide a slight interference to the fastener shank (also subsequently described). Of the five major methods of mandrelizing, the Boeing-developed "Sleeve Cold-Expansion"* process method has begun to receive considerable attention. In this procedure, a thin-wall split sleeve is inserted in the hole and a mandrel then is pulled through. This technique allows a great deal of latitude in hole-drilling tolerance and hole-finish conditions because the split sleeve is interfacing between the actual hole surface and the working mandrel. The use of the lubricated split sleeve allows the highest degree of radial cold expansion (0.010 to 0.050 inch, depending upon fastener diameter) attainable without concern for galling or overburnishing. The sleeve reduces the pulling load on the mandrel while absorbing the longitudinal frictional forces normally transferred to the hole interface. The high-level residual-compressive stress has been found to surround the hole to a distance

^{*} Sleeves and tooling were manufactured by Industrial Wire and Metal Forming, Inc., Tukwila, Washington.

in excess of one radius from the edge of the hole. Once the hole has been mandrelized, the sleeve is removed and the hole is reamed to the proper size to suit the selected fastener. The fastener is then installed in a line-to-line, very slight interference (0.002 inch maximum). The fatigue-improvement mechanism generated by this fastener system lies in the reduction of the maximum cyclic stress brought about by the residual compressive stresses imposed during the cold-working process.

3.1.4. Material Selection

Two parameters were considered when fastener material selections were made. First, it was considered important to consider two different strength levels of fasteners, and second, it was believed that elastic modulus of the fastener might well effect joint fatigue life. As a result, PH13-8Mo stainless steel and Ti-6A1-4V were selected because of the level of usage and their differing strength levels ($F_{su} = 125$ ksi and 95 ksi, respectively) and elastic moduli (28.3 x 10^3 ksi and 16.0 x 10^3 ksi, respectively).

Nut and collar material selections were based upon fastener manufacturers' recommendations and compatibility with fastener and joint materials. With the exception of the PH13-8Mo HiTigue fastener, all nuts and collars were made of A-286 stainless steel. The exception was the HL1399 collar which was made of alloy steel with a type 302 stainless steel washer.

3.1.5. Fastener Configuration

Two fastener head styles were considered in this program. Major emphasis was placed on the shear-type countersunk head with secondary investigation of joints assembled with protruding shear head fasteners. Manufacturers' basic part designations are shown in Table 1. (The A-286 split sleeve, part number ST5300-CBS-O-N, was used with all straight-shank fasteners.)

3.1.6. Diameter and Grip

The major portion of the investigation was conducted using 3/8-inch-diameter fasteners; however, size effects were studied using 3/16- and

 $\frac{1}{2}$ -inch-diameter fasteners. Appropriate grip lengths were selected to allow assembly of specimens (using standard material gage thicknesses), with thickness-to-diameter ratios (t/D) of approximately 0.5 and 1.5.

TABLE 1. BASIC FASTENER DESIGNATIONS

Fastener System	Materia1	Protrud- ing Head	Flush Head	Nut
TaperLok	Ti-6A1-4V	TLV 200	TLV 100	TLN 1001 A-286 Washer Nut
TaperLok	PH13-8Mo	TLD 200	TLD 100	TLN 1001 A-286 Washer Nut
HiTigue	Ti-6A1-4V	HLT 10	HLT 11	HLT 97 A-286 Frangible
HiTigue	PH13-8Mo	HLT 34	HLT 35	HL 1399 Alloy Steel Frangible
Straight Shank	Ti-6A1-4V	HL 10	HL 11	HL 97 A-286 Frangible
Straight Shank	PH13-8Mo	HL 644	HL 645	HL 97 A-286 Frangible

3.1.7. Finish and Lubrication

Fastener platings and lubricants were selected, as recommended by the fastener manufacturers, to be compatible with the joint materials being tested and to ensure proper fastener operation. The fastener finishes and lubricants for each of the fastener materials are shown in Table 2.

TABLE 2. FASTENER FINISH AND LUBRICATION

Fastener	Pin Finish/Lubrication	Nut or Collar Finish/Lubrication
	PH13-8Mo P	ins
TaperLok	Passivate/Lubeco #2123	Passivate/Cetyl Alcohol
HiTigue	Hi-Kote 2/Cetyl Alcohol	Nut-Cadmium Plate/Cetyl Alcohol Washer-Solid Film Lube per MIL- L-8937
Straight Shank	Hi-Kote 2/Cetyl Alcohol	Lubeco #2123
	6A1-4V Pi	ns
TaperLok	Lubeco #2123	Passivate/Cetyl Alcohol
HiTigue	Hi-Kote 2/Cetyl Alcohol	Silver Plate/Cetyl Alcohol
Straight Shank	Lubeco #2123	Silver Plate/Cetyl Alcohol

3.1.8. Installation Methods

All fastener installations were accomplished to the nominal interference or cold work values recommended by the manufacturer, except when installation effects were studied. In that case, fasteners were installed in minimum and maximum levels to generate data on the effects of hole drilling tolerance and interference or cold work levels on fatigue life.

The TaperLok fasteners were installed in accordance with Briles Installation Specification BPS No. 148; the HiTigue fasteners were installed in accordance with Hi-Shear Specification No. 299. These specifications define drills and drilling procedures, hole tolerances, and gaging. They also specify inspection methods, interference limits, and installation procedures.

Process Instructions IWMF-1-75 obtained from Industrial Wire and Metal Forming, Inc., and the work reported by the Boeing Company (5) were used to define the installation procedures for the mandrelizing process. Fastener interference and cold work levels are shown in Table 3 with installation torque levels shown in Table 4.

Some hold drilling and fastener installations were completed by Omark Industries and HiShear Corporation in order to assess laboratory-to-laboratory variations in the specimen preparation process. (Industrial Wire and Metal Forming, Inc., did not participate in this portion of the program.)

TABLE 3.	FASTENER	INTERFERENCE	AND	COLD	WORK	IFVFIS
TUDLE 7.	LUDITHEI	THIEREENCE	MIND	COLD	WULL	LEVELIO

Fastener	Diameter, inch	Level, inch	Range, inch
TaperLok ^a	3/16	0.0025	0.0015 - 0.0036
TaperLok	3/8	0.0040	0.0024 - 0.0054
TaperLok	1/2	0.0048	0.0030 - 0.0066
HiTigue	A11	0.0045	0.0030 - 0.0060
Mandrelize ^b	3/16 3/8 1/2	0.0115 0.0175 0.0210	0.0105 - 0.0125 0.0160 - 0.0190 0.0195 - 0.0225
Straight Shank ^c	A11	0.0020	0.0015 - 0.0025

Interference-fit fastener.

Cold work level using Boeing Split Sleeve/Mandrel system.

c Interference-fit fastener after cold work expansion of holes.

TABLE 4. INSTALLATION TORQUE^a

			1	Bolt Materia	a1	
			PH13-8Mo		Ti	-6A1-4V
Diameter, inch	Grip	TLN 1000	HL 1399	HL 97	TLN 1000	HLT and HL 97
3/16	0.500	45 ± 10	42 ± 7.5	30 ± 5	40 ± 10	30 ± 5
3/8	0.380	180 ± 15	235 ± 25	220 ± 20	170 ± 15	220 ± 20
3/8	1.250	320 ± 15	235 ± 25	220 ± 25	220 ± 20	220 ± 20
1/2	1.500	650 ± 30	450 ± 25	400 ± 30	625 ± 15	400 ± 30

a All torque values are in inch-lbs.

3.2. Fastened Joint Specimens

The selection of the joint configuration for evaluation of fastener fatigue life has historically been left to the discretion of the airframe designers. Usually, each interested party or organization would select or design a fatigue test specimen which they believed most closely matched their structural application. This led to a multiplicity of specimen configurations, which was in excess of 30 configurations in the simpler forms by the late 1960's. It was obvious that with the large number of specimens in use, there was no possibility of gathering any quantity of comparable data on any one type of fastener. Hence, the DoD-sponsored Fastener Test Development Group undertook a project to study and specify configurations and test conditions for joint lap-shear-fatigue testing. Combined military-industry consideration of the problem indicated that some comparative testing of these various joints would have to be conducted in order to determine which of the joints were sensitive to the influences of installed fasteners. Urzi (6,7) undertook projects under Navy and Air Force sponsorship to survey the industry, determine the types and configurations of joints in use, and evaluate those joints. He was able to separate the joint configurations into four basic types--no-load, low-load, medium-load, and high-load transfer. Comparative testing indicated that one configuration of each of the type of joints noted above was sensitive to the fatigue resistance of the fastener installed in it.

3.2.1. Configuration Selection

The specimen configurations used in this program are shown in Figures 1 through 4. These configurations, with the exception of Figure 3, are essentially those proposed by Urzi for inclusion in Test 21 of MIL-STD 1312. The specimen shown in Figure 1 was used to develop smooth specimen and open hole ($K_T \sim 3.1$) material fatigue data. The majority of the investigative effort revolved around the reverse dogbone (low-load-transfer) joint with some testing conducted on the simple-lap (100 percent load-transfer) joint and the modified $1\frac{1}{2}$ dogbone (medium-load-transfer) joint. Sheet thicknesses were selected to provide a thickness-to-diameter ratio (t/D) ranging between approximately 0.5 and 1.5.

3.2.2. Joint Material Selection

The selection of Ti-6Al-4V in the mill-annealed condition was fairly obvious based on the quantity used in industry. The next logical choice was an aluminum alloy; however, the selection of a particular alloy posed a problem. Aluminum 2024-T81 and -T851 are presently being given a fair amount of usage by industry; however, there is very little data published concerning fatigue properties. In addition, the 2000-series aluminum alloys are somewhat harder to machine and there was considerable concern that their "gummyness" might introduce extra hole drilling problems in the form of oval, out-of-round, and wormy holes.

As a result, the 7000-series alloys were considered and, after discussions with the project monitor, the 7075 alloy in the T73 and T7351 tempers was selected. These tempers have the lowest strength of the 7075 tempers, but have the highest toughness and lowest susceptibility to stress-corrosion cracking. In addition, they have very good machining properties, making consistent high quality hole preparation a possibility. Nonetheless, this material is more notch sensitive than 2024 and care must be exercised during specimen preparation to avoid nicks and gouges, especially on the fay surfaces, which can act as crack-initiation points.

NOMINAL D	±.020	± .010	± .005	± .020	THICKNESS t
3/8	16.0	3.50	2.250	12.0	.250
3/8	16.0	3.50	2.250	12.0	.190, .625

FIGURE 1. SHEET STRENGTH (NO-LOAD) SPECIMEN

FAST SER			coo	. E	A A			+ . 005 ×	+ .005 + .005 + .007 + .010 + .007 + .007 HIICKNESS
15.00 2.500 1.125 4.237	25 4.	. 237	3.037	2.325	1.125	3.037 2.325 1.125 3.000	.750	.375	.250
19.00 3.500 2.250 6	50 6	6.116	4.916	3,450	2.250	6,000	4,916 3,450 2,250 6,000 1,500	.750	.190
21.00 5.000 3.000 8.070	00 8	070	6.870	4.200	3.000	6.870 4.200 3.000 8.000	2.000 1.000	1,000	.750

9

LOW-LOAD-TRANSFER (REVERSE DOGBONE) TEST SPECIMEN FIGURE 2.

NOMINAL D	± .010	± .010	± .010	± .005	± .005 4D	THICKNESS
3/8	11.00	2.25	6.25	.750	1.500	.625

FIGURE 3. MODIFIED MEDIUM-LOAD-TRANSFER (12 DOGBONE) SPECIMEN

NOMINAL D	± .005 2D	<u>+</u> .005	± .005	± .010	THICKNESS t
3/16	. 375	. 750	1.500	5.500	.250
3/8	.750	1.500	3.000	11.000	.190, .625
1/2	1.000	2.000	4.000	15.000	.750

FIGURE 4. HIGH-LOAD-TRANSFER (SIMPLE-LAP-JOINT) SPECIMEN

4. EXPERIMENTAL PROGRAM

As stated earlier, the objective of the program was to explore the development of design data for joints using fatigue-improvement fasteners and to provide initial definition of test data requirements and presentation format. Because of the size of the task, it was necessary to design a test matrix which would provide as much usable data as possible without overlooking the effects of any important variables which might provide unconservative data when other fatigue-improvement fasteners were investigated. Several approaches were carefully considered in arriving at a test matrix that would achieve the objectives of this program. Because of the extensive number of specimens required for a completely factored, statistically designed experiment (involving 8 to 20 specimens for each variable), a modified statistical approach was taken. In the test matrix described subsequently, emphasis was placed on areas of prime concern--with limited examinations of secondary variables such that statistical analysis of the data would indicate the effects, positive or negative, of the variables relative to the fatigue behavior of a baseline condition. Prior to defining the actual test matrix, it was necessary to define some of the baseline conditions such as stress ratio; primary joint configuration, t/D ratio, and material; and primary bolt diameter, material, and head style.

4.1. Stress Ratio, R

Many of the presently available data have been generated at a stress ratio $R = \frac{\text{minimum cyclic stress}}{\text{maximum cyclic stress}}$ of 0.1. Although the exact reason for selecting this R value cannot be traced--even after considerable discussion with many airframe and fastener people--it may be that early fatigue machines operated best at R = 0.1.

From a practical application approach, it is not uncommon to see flight spectra loadings that include ground-air-ground cycles of R=-0.4 or less, and gust loads of R=+0.4 or greater. From these two considerations, R=+0.25 and R=-0.25 were selected for use in this program. Further justification of this selection can be made by examining the relationship of R values in the constant-life diagram.

At a given number of cycles to failure, each pair of R values will describe two points that can reasonably be connected by a straight line and, if sufficient data are available, some confidence bands. Comparison of Figure 5(a) and (b) shows that wider coverage and better interpolation and extrapolation can be obtained with the R = 0.25 and - 0.25 values with reasonable accuracy over the range of \pm 0.45. In addition, if a parameter could be found to provide data collapse around the stress ratio, its effectiveness or accuracy could be better tested with the broader range of R = \pm 0.25.

4.2. Primary Joint Configuration

The primary joint configuration was selected as the aluminum low-load transfer specimen. A primary t/D ratio of 1.5 was selected in an effort to find the greatest fastener system differences in thick stackups.

4.3. Primary Fastener Configuration

The 3/8-inch-diameter fastener was selected for baseline data generation as it is the middle of the extremes considered in this program. The flush-head configuration was used in order to produce the most conservative fatigue data; the PH13-8Mo material was selected because of the lower cost compared to titanium fasteners.

4.4. Summary of Variables

The primary variables detailed above are summarized as follows:

- 2 joint configurations
- 1 bolt head style

2 joint materials

• 1 t/D ratio

• 1 bolt diameter

• 2 stress ratios.

• 1 bolt material

The secondary variables (in the numbers indicated in parentheses) that were examined are as follows:

Additional joint configuration (1)

(a) $R = \pm 0.1$

(b) $R = \pm 0.25$

FIGURE 5. CONSTANT LIFE DIAGRAMS

- Additional bolt diameters (2)
- Additional bolt material (1)
- Additional bolt head style (1)
- Additional t/D ratio (1)
- Additional stress ratios (2)
- Variations in installation condition (minimum and maximum).

4.5. Statistical Treatment of Data

As discussed earlier, statistical confidence in data intended for inclusion in MIL-HDBK-5 was one of the major objectives. This program was designed to provide the broadest possible coverage of the fastened-joint fatigue problem. The general approach was to define primary and secondary variables and give them separate statistical consideration. The primary variables were allotted more test specimens, thus making it possible to generate statistically confident fatigue curves. These curves were then used as baselines and secondary variables were tested to determine if a statistically measurable effect was present. Tests on the secondary variables were not intended to give an absolute measure of magnitude but only to establish if an effect is present. The general approach is discussed in the following paragraphs.

4.5.1. Fatigue Curves

After the important factors influencing fatigue life of a particular fastener/joint combination had been identified, a baseline set of data was generated for that combination. These data were used to define an S-N curve to which further comparison could be made. For each S-N curve, the stress levels and number of repetitions of these stress levels were selected to obtain maximum confidence on the mean curve while attempting to minimize the variance at all levels.

In fatigue testing, the optimum allocation of selected stress levels is highly dependent on the expected shape of the 3-N curve, while the appropriate number of test repetitions at a given stress level is related to the

magnitude of variance in log fatigue life for the fatigue life interval of interest. In effect, this means, generally, that it may be useful to test some additional specimens in sections of the curve (at longer lives) where data variation is likely to be greatest.

After the test matrix for a given S-N curve had been defined and completed, an optimal regression curve was constructed. In the simplest case, fatigue life was considered only a function of some stress parameter and all other variables were held constant. This was based on an expression of the general form

$$\log_{10} N_f = A_1 + A_2 S + A_3 \log_{10}$$
, (1)

 A_1 , A_2 , A_3 = regression coefficients. BCL computer programs ⁽⁸⁾ facilitate the regression optimization of Equation (1). A quantitative estimate of goodness-of-fit was provided by way of the calculated statistical parameter, r^2 , defined as the sum of squares of deviations of the dependent variable (in this case, $\log_{10} N_f$) from its mean associated with regression. Values of r^2 approaching 100 percent were most desirable, since that implied a large percentage of the variance of the dependent variable was attributable to the regression and that a good correlation between the dependent and independent variables had been established.

If fatigue life was truly a random variable, confidence limits could be established on the mean curve [Equation (1)] for any given stress level by use of the following expression:

$$\log_{10} N_{f} = \overline{\log_{10} N_{f}} \pm k(s.d.)$$
, (2)

where $\overline{\log_{10} N_f}$ = mean fatigue life calculated from Equation (1)

k = factor that depends on the sample size, n; the desired proportion of the population distribution; and the confidence at which this interval was estimated (9)

The calculation of confidence limits using Equation (2) required the assumption that the data were independent and log-normally distributed, with zero

mean deviations and constant variance (8). Of these considerations, the uniformity of variance was of greatest concern as fatigue data generally tends to show increasing variance with increasing life. However, it was believed that the selection of a 90 percent confidence level and a 90 percent population distribution would provide a reasonable variance range at long lives and a conservative range at short lives. It was also believed that inspection of the r² statistic and standard deviation for each regression-optimized data set would provide adequate insight concerning log-normal distribution and zero mean deviations.

4.5.2. Secondary Variable Tests

After a baseline or mean curve with 90 percent confidence bands (see Figure 6) had been generated, a variable was then examined to determine if it had an effect on fatigue life, as discussed in the following paragraphs.

If the chances of the data falling to the left of the mean curve were 50-50, or $\frac{1}{2}$, then the probability of N test values falling to the left of the mean curve was $(\frac{1}{2})^N$. If five specimens were tested and they all fell to the left of the mean curve, then the probability of there being an effect (i.e., different from mean curve behavior) was $(\frac{1}{2})^5$ or 1/32. Ninety-five percent confidence is 5 chances in 100 or 5/100 or 1/20. If the data showed one chance in 32 of error and 95 percent confidence was one chance in 20, it can be said with greater than 95 percent confidence that the variable reduced fatigue life.

The same argument can be applied to a seven-specimen test lot. In this case, the probability of there being an effect is $(\frac{1}{2})^7$ (= 1/128) or one chance in 128. Ninety-nine percent confidence is one chance in 100 or 1/100. Hence, if all seven data points were to fall to the left of the mean curve, it could be said with 99 percent confidence that the variable reduced fatigue life. A similar argument can be made for four specimens and 90 percent confidence.

The converse argument (i.e., data to the right of the mean curve) can be used to show that a variable increased fatigue life.

A somewhat different argument can be applied for sample sizes of less than five or data falling outside of a confidence band. In this case,

FIGURE 6. MEAN CURVE AND STATISTICAL CONFIDENCE BANDS

a well-defined baseline mean curve with a 90 percent confidence band is necessary. Here, we rely on the confidence band and say "we have 90 percent confidence that 90 percent of the data for this condition fall within the band". Thus, if we tested a small sample size (say four) and the data fell outside the band, we could be 90 percent confident that the data did not belong to the same family as that of the mean curve.

If the data from a secondary variable test should fall on both sides of the mean curve, one might conclude that the data could be combined with the mean curve data. In that case, the data can be tested statistically to determine if it belongs in the data family of the mean curve.

With this statistical basis, the test matrix described in the following paragraphs was determined.

4.6. Test Matrix

The first step in the program was confirmation of joint material properties as compared to existing data. Because data were available, a center point stress ratio of zero (R=0) was used and $R=\pm 0.25$ curves could be plotted from existing data with a correction factor added, if required. The specimens allocated for this portion of the program are shown in Table 5. Half of the specimens were smooth sheet and the other half had a center hole drilled to provide open-hole data (see Figure 1).

TABLE 5. SPECIMENS FOR DETERMINATION OF JOINT MATERIAL FATIGUE PROPERTIES

Test Series	Number of Specimens	Material	Thickness, inch	Nominal Diameter	Load	Notes
54 54	2 10	A1 A1	.250	3/16'' 3/16''	ULT S-N	Static
55	2	A1	.190	3/8"	ULT	Static
55	10	A1	.190	3/8"	S-N	
56	2	A1	.625	3/8"	ULT	Static
56	10	A1	.625	3/8"	S-N	
57	2	Ti	.250	3/8"	ULT	Static
57	10	Ti	.250	3/8"	S-N	
58	2	Ti	.625	3/8"	ULT	Static
58	10	Ti	.625	3/8"	S-N	

a To be repeated with specimens with center hole drilled to nominal diameter shown above.

The second step was to conduct static and fatigue tests on the fastened joints shown in Table 6. This matrix was completed for each fastener type. Even though all fastener types were tested simultaneously to eliminate test machine and time-dependent errors, a description of the function of the matrix as conducted for any one fastener follows.

Test 1 provided ultimate tensile and yield strength data for that joint configuration. This test was conducted on all fastener and joint combinations included in this program.

Test 2 developed the fatigue curve for the same configuration with the load level related to ultimate tensile strength (UTS), if necessary. The fatigue curve was developed using a limited number of specimens; five or six specimens were tested at progressively lower load levels to determine the shape of the curve. Once the shape was established, loads of particular interest were selected and the individual tests replicated. After the test data were obtained, the statistical curve was determined for use as a baseline.

Test 3 examined the effect of minimum and maximum installation procedures. As discussed earlier, statistical tests conducted during the test sequence made it possible to conclude this test before all of the specimens were subjected to fatigue cycling. In some cases where the statistics indicated that an effect was present, it was desirable to continue the test so as to generate as much data as possible to evaluate the magnitude of the effect.

Test 4 was a repeat of Test 2 at the negative stress ratio. In this case, if Test 2 had defined the shape of the curve, fewer specimens were deemed necessary.

 $\underline{\text{Test 5}}$ considered a change in sheet thickness. These data were compared to the curve generated in Tests 2 and 4 to determine t/D effect.

Tests 6 and 7 considered different bolt diameters. The data were compared to the results of Tests 2 and 4.

Tests 8, 9, and 10 were identical to Tests 1, 2, and 3 with the exception that joint configuration was changed. A direct test for effect was made between the two series.

Tests 11 and 12 dealt with the change in bolt diameter and were treated in the same manner as Tests 6 and 7.

TABLE 6. JOINT TEST PROGRAM FOR ONE FASTENER SYSTEM (a)

Test	Number of	Joint Figure	Maka=2-1	+/n	Bolt Diam	Bolt (b) Material	Load	R	Notes
eries	Specimens	Number	Material	t/D	3/8	A	ULT		Static
1	2	2	A1 A1	1.5	3/8	A	S-N	+.25	
2	15	2	A1	1.5	3/8	A	A-C		Minimum and maximum installations, 6 each - 2 load
3	12	2		1.5	3/8	A	S-N	25	
4	12	2	A1		3/8	A	A-B-C		6 at each R - 2 at each load + 2 static
5	.4	2	A1	.5			A-C	_	3 at each of 2 loads + 2 static
6	8	2	A1	1.5	3/16	A			3 at each of 2 loads + 2 static
7	8	2	A1	1.5	1/2	A	A-C		Jac Each of L Louis
8	2	+	A1	1.5	3/8	A	ULT	+.25	
9	15	4	A1	1.5	3/8	A	S-N		
10	12	4	A1	1.5	3/8	A	S-N	25	3 at each of 2 loads + 2 static
11	8	4	A1	1.5	3/16	A	A-C		3 at each of 2 loads + 2 static
12	8	4	A1	1.5	1/2	A	A-C		
13	2	4	A1	.5	3/8	A	ULT		Static
14	12	4	A1	. 5	3/8	A	A-C	_	3 at each of 2 loads - both R's
15	2	3	A1	1.5	3/8	A	ULT		Static
16 ^(c)	6	3	A1	1.5	3/8	A	A - B - C	+. 25	
17 ^(c)	6	3	A1	1.5	3/8	A	A-B-C	25	
18 ^(d)									
19 ^(d)									
20 ^(d)									
21	2	2	A1	1.5	3/8	В	ULT		Static
22	12	2	A1	1.5	3/8	В	S-N	+.25	
23	9	2	A1	1.5	3/8	В	S-N	25	
24	2	2	A1	. 5	3/8	В	ULT		Static
25	12	2	A1	. 5	3/8	В	A - B - C	±.25	2 each at 3 loads - both R's
26	2	4	A1	1.5	3/8	В	ULT		Static
27	12	4	A1	1.5	3/8	В	A-B-C	±.25	2 each at 3 loads - both R's
28	2	4	A1	.5	3/8	В	ULT		Static
29	8	4	A1	. 5	3/8	В	A-C	±.25	2 each at 2 loads - both R's
30	2	2	Ti	1.5	3/8	A	ULT		Static
31	10	2	Ti	1.5	3/8	A	S-N	+.25	
32	4	2	Ti	1.5	3/8	A	A-C	25	2 each at 2 loads
33	8	2	Ti	1.5	3/8	A	A-C	+.25	2 each at 2 loads, minimum and maximum conditions
34	2	2	Ti	. 5	3/8	A	ULT		Static
35	6	2	Ti	. 5	3/8	A	A-B-C	+.25	2 each at 3 loads
36	2	4	Ti	1.5		3 A	ULT		Static
37	6	4	Ti	1.5	3/8	3 A	A-B-C	+.25	2 each at 3 loads
38	2	4	Ti	. 5	3/8	8 A	ULT		Static
39	6	4	Ti	. 5			A-B-C	+.25	2 each at 3 loads
40	2	2	Ti	1.5			ULT		Static
41	8	2	Ti	1.5			A-B-C	+.25	2 each at 2 loads - both R's
	2	2	A1	1.5		(e)	ULT		
42	12	2	A1	1.5		(0)	A-B-C	+.25	2 each at 3 loads - both R's
43	2	2	A1			(e)	ULT		Static
44						(0)	A-B-C	+.25	
45	12	2	A1	1 6		(0)	l'LT		Static
46	2	4	A1	1.5		(P)	A-B-C	+.25	
47 48 ^(f)	12	4	A1				A-C	+.1	2 each at 2 loads
48 49 ^(f)	4	2	A1	1.5			A-C	-1.0	2 each at 2 loads
50 ^(f)	4		A1	1.5			A-C	+.1	2 each at 2 loads
50 (f)	4	4	A1	1.5			A-C	-1.0	2 each at 2 loads
51 (f)	4	4	A1	1.5		(0)	A-C A-C		2 each at 2 loads
52 ()	4	2	Ti	1.		(0)		+ .1	2 each at 2 loads
53(f)	4	4	Ti	1.	5 3/8	5 A	A - C	-1.0	2 each at 2 toads

⁽a) To be repeated for all 3 fastening methods.
(b) Bolt material A is PH 13-8 Mo - Flush Head; bolt material B is 6A1-4V - Flush Head.
(c) Revised per agreement with technical monitor on June 7, 1973.
(d) Deleted per agreement with technical monitor on June 7, 1973.
(e) Bolt material A is PH 13-8 Mo - Protruding Head.
(f) Added per agreement with technical monitor on June 7, 1973.
(g) To be used for Boeing Mandrelized Hole concept only.

 $\underline{\text{Tests }13 \text{ and }14}$ evaluated the effect of change of t/D ratio in the second joint configuration.

Tests 15, 16, and 17 evaluated the third joint configuration in much the same way as the first two configurations. The bolt diameter was held constant throughout.

 $\underline{\text{Tests 21 through 29}}$ evaluated the titanium bolt material in two joint configurations.

Tests 30 through 39 considered the PH13-8Mo bolt in two joint configurations fabricated from titanium material.

Tests 40 and 41 dealt with the titanium bolt in titanium material.

Tests 42 through 47 provided insights concerning the effect of protruding head bolts on joint life. The data were compared directly to the results of Tests 1 through 14.

Tests 48 through 53 provided additional comparative data at additional stress ratios in order to test further for any data collapse parameter.

It was possible (as discussed previously) to make statistically confident decisions concerning the effect of a variable relative to a baseline condition. Proper control of the test sequence allowed these tests to be made while the program was in progress. In some cases, it was possible to conclude that a particular variable definitely did or did not have an effect before all of the allotted specimens for that particular tests had been used.

4.7. Test Equipment and Environment

All fatigue experiments were conducted using one of four closed-loop electrohydraulic test systems, as appropriate. The systems are capable of applying maximum dynamic loads of \pm 500,000, \pm 130,000, \pm 50,000, and \pm 20,000 pounds, respectively. The systems were selected on the basis of load and compliance requirements of individual specimens to provide the most efficient system utilization. Cyclic loading frequencies varied from 3 to 25 Hz dependent upon specimen load and stroke requirements. All tests were conducted in an air-conditioned, humidity-controlled laboratory.

5. SPECIMEN PREPARATION

5.1. Specimen Blanks

Specimen blanks shown in Figures 1 through 4 were subcontracted to the Dyna-Quip Corporation, Columbus, Ohio. The aluminum material was ordered and delivered with adhesive-backed paper applied to both sheet surfaces. The protective paper was kept on the material during specimen blanking and hole drilling to minimize surface scratching and denting. As noted earlier, some of the blanks were sent to Omark Industries and the HiShear Corporation for hole drilling and fastener installation.

5.2. Fay Surface Treatment

Fay surface treatments were in accordance with proposed MIL-STD-1312 Test 21. High-load-transfer joints were degreased prior to assembly. Aluminum low-load and medium-load transfer specimens were degreased and coated with zinc chromate primer (per TT-P-1757) applied in accordance with MIL-P-6808. Titanium low-load-transfer specimens were coated with Molykote 106 and then cured for 60 minutes at 300 F. Study of AFML-TR-71-184 entitled "Fretting Resistant Coatings for Titanium Alloys" indicated that, other than degreasing, no preliminary surface treatment was required.

5.3. Hole Preparation

As noted earlier, all fastener holes were prepared in accordance with the manufacturers' recommended instructions. All holes were inspected to ensure that diameter, roundness, rifling, and tool marks were within acceptable limits. In addition, a statistical analysis was conducted on hole sizes to ensure proper interference levels. This was accomplished by computing a mean and standard deviation for each family of hole diameters. A range was then computed that encompassed 99.97 percent of the values (mean ± 3 standard deviations) and was compared to the minimum and maximum measured values.

5.3.1. Tapered Holes

Tapered holes were prepared using combination drill reamers obtained from Omark Industries. All holes were predrilled 1/64-inch undersize and then taper reamed. A master tapered pin with Prussian blue paint pigment applied was pressed into the hole with finger pressure and the protrusion was measured to determine the interference level as outlined earlier. The pin was then tapped into the hole approximately 25 percent of the protrusion value and removed. The pattern generated on the pin was checked visually to ensure a minimum of 80 percent bearing on all sheets. The protrusion value and percent bearing was recorded for each hole. A summary of computed interference values is presented in Table 7.

Nomina1 Mean Inter-Standard Minimum/Maximum Range, $\overline{X} \pm 3$ s.d., Diameter, ference, Deviation, Measured. inch inch (s.d.), inch inch inch 0.00204/0.00310 3/16 0.00253 0.00054 0.00199/0.00307 3/8 0.00418 0.00032 0.00321/0.00515 0.00311/0.00485 1/2 0.00556 0.000686 0.00350/0.00762 0.00531/0.00596

TABLE 7. TAPERLOK INTERFERENCE VALUES

5.3.2 HiTigue Holes

Holes for HiTigue fasteners were prepared by predrilling 1/64-inch undersize and then reaming to the final diameter. All holes were checked visually to ensure good quality and all hole diameters were measured. A summary of hole sizes and computed interferences is presented in Tables 8 and 9.

Nominal Diameter, inch	Mean Inter- ference, inch	Standard Deviation, (s.d.), inch	Range, $\overline{X} \pm 3 \text{ s.d.}$, inch	Maximum/Minimum Measured, inch
3/16	0.19074	0.000395	0.18955/0.19192	0.1901/0.1912
3/8	0.37517	0.000555	0.37462/0.37573	0.3747/0.3757
1/2	0.50054	0.000162	0.50006/0.50103	0/5002/0.5008

TABLE 8. HITIGUE HOLE SIZES

TABLE 9. HITIGUE INTERFERENCE VALUES

Nominal Diameter, inch	Nominal Shank Diameter, inch	Mean Hole Diameter, inch	Mean Interference, inch
3/16	0.1950	0.1907	0.0043
3/8	0.3800	0.3752	0.0048
1/2	0.5050	0.5005	0.0045

5.3.3. Mandrelized Holes

Holes for the mandrelizing process were drilled 1/64-inch undersize, reamed to final size, and measured. The holes were cold worked and then final reamed (approximately 0.007 inch material removed) to final size for fastener installation. A summary of cold working diameters and interference along with hole sizes and computed interferences is presented in Tables 10 through 13.

TABLE 10. MANDRELIZED COLD WORK LEVELS

Nominal Diameter, inch	Nominal Hole Diameter, inch	Sleeve Wall Thickness, inch	Mandrel Diameter, inch	Cold Work Level,
3/16	0.178	0.008	0.174	0.012
3/8	0.356	0.010	0.354	0.018
1/2	0.4725	0.012	0.4695	0.021

TABLE 11. MANDRELIZED HOLE SIZES BEFORE COLD WORKING

Nominal Diameter, inch	Mean Diameter, inch	Standard Deviation, (s.d.), inch	Range, $\overline{X} \pm 3 \text{ s.d.},$ inch	Minimum/Maximum Measured, inch
3/16	0.17822	0.00021	0.17759/0.17885	0.1776/0.1787
3/8	0.3557	0.00028	0.35486/0.35654	0.3550/0.3563
1/2	0.4724	0.00026	0.47162/0.47318	0.4715/0.4731

TABLE 12. MANDRELIZED HOLE SIZES AFTER COLD WORKING AND REAMING

Nominal Diameter, inch	Mean Diameter, inch	Standard Deviation, (s.d.), inch	Range, $\overline{X} \pm 3 \text{ s.d.}$, inch	Minimum/Maximum Measured, inch
3/16	0.1871	0.000224	0.18643/0.18777	0.1866/0.1877
3/8	0.372256	0.000177	0.37172/0.37279	0.3720/0.3727
1/2	0.49644	0.000167	0.4959/0.4969	0.4962/0.4967

TABLE 13. FINAL FASTENER INTERFERENCE LEVELS FOR MANDRELIZED HOLES

Nominal Diameter, inch	Nominal Shank Diameter, inch	Mean Hole Diameter, inch	Mean Interference, inch
3/16	0.1890	0.1871	0.0019
3/8	0.3740	0.3723	0.0017
1/2	0.4990	0.4964	0.0026

5.4. Specimen Supports

Antibuckling restraint similar to that shown in Figure 7 was provided for all specimens loaded at negative R ratios.

Initially, all high-load-transfer joints were provided with the sandwich-type bending restraint as defined in proposed Test 21 of MIL-STD-1312 and shown in Figure 7. However, study of the specimen while under load revealed extensive bending of the specimen outside of the restraint area was being transferred to the actuator of the test system. A secondary restraint system was devised which consisted of a pair of rollers contacting each of the restraint surfaces in an effort to reduce lateral motion of the restraint. In an effort to ensure that the secondary system did not impose any load transfer across the restraint, a specimen was strain gaged and load-strain data were obtained with the specimen restraint in place and with the specimen restraint and rollers in place. Analysis of that data indicated that load was being transferred across the restraint in both cases. Additional analysis led

FIGURE 7. ANTIBUCKLING AND BENDING RESTRAINT

to the conclusion that thick joints ($t/D \ge 0.5$) could not be adequately restrained from bending without transferring some of the applied load across the restraint system. Hence, it is difficult to assess fastener effects when either the degree of joint bending is not known or the actual applied load in the joint area is unknown. (Details of the above-noted analysis are presented in Appendix F.) As a result, it was determined that the data being obtained for the high-load-transfer joint configuration were of little value in defining critical design data parameters and, hence, investigation of that joint configuration was stopped.

5.5. Specimen Identification

A specimen identification code was devised which made it possible to code the machined blanks and keep a data log of all operations on the specimen thereafter. The code is explained as follows:

	Identification Code								
Fastener	X	X	X	X	X	X	X	X	Х
Straight-Shank Interference Tapered-Shank Interference Straight-Shank Mandrelized Hole None	S T M N								
Bolt Material		V		1					1
PH13-8Mo Titanium		D V							
Bolt Head Type			¥						
Flush Head Protruding Head			F P	1					
Bolt Diameter (in 1/16's) None 0.190 0.375 0.500				0 3 6 8					
Joint Configuration					1				
Sheet Strength Low-Load Transfer Modified 1½ Dogbone High-Load Transfer					S D L M				
Joint Material Clad 7075-T73 Aluminum 6A1-4V Titanium						A T			
Test Series							1-9	V	
Specimen Number								1-99	*
Prepared by a Second Source	31								A

For example, SDF6DT31-7 describes a specimen where a straight-shank interference, PH13-8Mo flush-head, 3/8-inch-diameter fastener is installed in a low-load-transfer joint made of Ti-6A1-4V. The specimen would be used for the seventh experiment of Test Series No. 31. An additional example might be NOSA59-4 which describes a nonfastened specimen in the no-load-transfer configuration made of aluminum, intended for the fourth experiment of Test Series No. 59.

6. METHODS OF DATA PRESENTATION

During the course of this program, constant consideration was given to the problem of data presentation format. Two major needs were identified:

(1) a format which would facilitate data analysis and determination of critical variables and (2) a format which would be easily understood when included in MIL-HDBK-5. As it turned out, the solutions of the two problems went hand-in-hand.

6.1. Data Analysis Format

It was apparent from the onset of the data generation portion of the program that maximum data utilization could be accomplished only if some method could be found to negate or predict the effects of the stress ratio, R. If these effects could be negated or caused to collapse via the use of some parameter, then it was believed that data could be grouped to provide a broader and more statistically confident data base. Consideration of the fatigue improvement mechanisms of fastener systems indicated that maximum stress (for cold working) and alternating stresses (for interference-fit) should be included along with stress ratio if the parameter was to apply to the fastener systems used in this program. A combination of maximum and alternating stresses yielded the following parameter:

$$\sqrt{S_{\text{max}} S_{\text{alt}}} \text{ ksi} = \sqrt{S_{\text{max}} (S_{\text{max}} - S_{\text{min}})}$$

$$= S_{\text{max}} \sqrt{1 - \frac{S_{\text{min}}}{S_{\text{max}}}}$$

$$= S_{\text{max}} \sqrt{1 - R} \text{ ksi},$$
(3)

where S_{max} = the stress having the highest algebraic value in the stress cycle

 S_{alt} = the alternating stress or stress range = S_{max} - S_{min}

 S_{min} = the stress having the lowest algebraic value in the cycle

R = the ratio of minimum stress to maximum stress.

This parameter is not new as Smith, et al $^{(10)}$, and Walker $^{(11)}$ developed forms for elastic and post-yield conditions and Rice, et al $^{(8)}$ demonstrated that both forms achieve a high degree of correlation. It should be kept in mind that the form (Eq. 3) discussed and used herein is primarily limited to elastic conditions. Plots of initial data using the $S_{max}\sqrt{1-R}$ parameter provided very promising results and so attention was next given to curve fitting models.

6.2. Curve-Fitting Models

Several curve-fitting models were considered as it was believed that data analysis could most easily be completed using S-N type curves. The models considered included polynomial, tangent, power, and logarithmic functions. The polynomial and tangent functions showed some initial promise; however, each model required weighted curve-fitting constants at both short and long life for each data set, hence reducing the probability of combining data sets. Several power functions were fitted to sample data sets using the least-squares-regression technique and r² statistics ranging from 60 to 75 percent were obtained with generally poor fits occurring at short and medium lives. On the other hand, Equation (1) (the logarithmic function), when applied to the same data sets, provided r² statistics ranging from 95 to 98 percent. As a result, Equation (1) was selected for use in the regression optimization of data.

7. DISCUSSION OF FATIGUE RESULTS

As noted previously, Equation (1) was fitted to the fatigue test data (see Appendix A) using regression techniques. Each data set was analyzed to determine the equation of the mean curve, the sample estimate of the standard deviation, and the r^2 statistic. Fatigue-life data were plotted along with the mean curve and the 90 percent confidence limits.

7.1. S-N Curves

7.1.1. Aluminum Low-Load-Transfer Joints

Fatigue life curves for TaperLok fasteners in aluminum low-load-transfer joints, Test Series 2, 4, 22, and 23, are presented in Figures B-1 through B-4 of Appendix B. These curves are plotted using the $S_{\text{max}}\sqrt{1-R}$ stress parameter versus log_{10} cycles to failure.

Fatigue life curves for the HiTigue fastener in aluminum low-load-transfer joints, Test Series 2, 4, 22, and 23, are presented in Figures B-5 through B-8 of Appendix B and similar curves for the mandrelized system are presented in Figures B-9 through B-12. Note that in all cases, the standard deviation is quite low and the r^2 value is always greater than 90 percent and generally greater than 95 percent.

Because of the apparent good curve fits obtained and similarities in curve equations, the analysis was expanded to investigate the combination of data sets. Test Series 2 and 4 and Series 22 and 23 were combined for the TaperLok, HiTigue, and mandrelized systems, respectively (Figures B-13 through B-18). Again, the low standard deviations and high r^2 values indicate very good curve fits and suggest that different stress ratios can be combined on the same curve using the $S_{\text{max}}\sqrt{1-R}$ parameter. The latter hypothesis was further tested by combining data for Test Series 48 (R = + 0.1) and 49 (R = -1.0) and Test Series 2 and 4 for the TaperLok, HiTigue, and mandrelized systems, respectively. Again, good fitting was obtained (Figures B-19 through B-21).

Data were combined for steel fasteners (Series 2 and 4) with data for titanium fasteners (Series 22 and 23) with extremely good results (Figures B-22 through B-24).

At this point, it was apparent that the parameter $S_{\text{max}}\sqrt{1-R}$ and the curve fitting equation were working quite well and further data pooling was considered. Data pooled for Test Series 2 and 4 for all three fastener systems produced a very good curve fit (Figure B-25). One data point that fell outside of the 90 percent band at a high stress level where the assumption of joint material elasticity may not be valid; nonetheless, 68 of the 69 data points (98.5 percent) were contained within the 90 percent band.

The data pooling process was continued (Figure B-26) wherein Test Series 48 and 49 data were added to that for Test Series 2 and 4 for all three fastener systems. Again, the standard deviation was small and the r² value high. The additional data caused a minor shift of the mean curve and the tolerance band; however, 89 of the 93, or 95.7 percent of the data points, were contained within the 90 percent band.

Data for Test Series 2, 4, 48, 49, 22, and 23 for all three fastener systems were then combined to produce one curve, Figure B-27. The changes in the curve, when compared to the preceding two figures, were minor with very small changes in standard deviation and r² values. Only eight of the data points fell outside of the 90 percent band, leaving 143 points or 94.7 percent of the data within the band.

It is believed that Figure B-27 is a reasonable example of normal fatigue data scatter and indicates that the data for the three fastener systems can be considered as one data population. Hence, the mean line and 90 percent band from Figure B-27 were used as a basis to evaluate the individual fastener variables in the low-load-transfer joint configuration.

7.1.2. Aluminum High-Load-Transfer Joints

Data generated for the aluminum high-load-transfer joint configuration at stress ratios of + 0.25 and - 0.25 are shown for the TaperLok and HiTigue fastener systems in Figures B-28 through B-31. Good curve fitting is seen in the standard deviation and r^2 values. The combining of stress ratios for each fastener system produced good fitting parameters (Figures B-32 and B-33).

Study of the last two curves (Figures B-32 and B-33) revealed greater difference than had previously had been observed for similar test series combinations. Study of joint failure modes also indicated a definite trend to develop gross section failures near the edge of the joint lap at low loads and fay surface failures at the hole at high loads. It appeared that the change in failure mode was due to the ineffectiveness of the bending restraints with such thick joints. To investigate this further, a specimen was instrumented with strain gages and load-strain data obtained and analyzed. The data indicated that bending was occurring. Attempts to eliminate bending

resulted in load transfer across the restraint and as a result, it was decided to forego any further testing on this specimen configuration. It was obvious that the mixed failure modes did not reflect fastener effects in the joint but, instead, reflected effects of the restraint system on the joint. (A further discussion of these findings is presented in Appendix F.)

7.1.3. Aluminum Medium-Load-Transfer Joints

No data were generated for the medium-load-transfer joint due to problems similar to those described for the high-load-transfer joint configuration. In this case, the joint members were also thick enough to generate substantial bending stresses. Efforts to reduce the bending via restraint systems proved unsuccessful since load was once again transferred across the restraint making determination of load applied to the specimen impractical.

7.1.4. Titanium Low-Load-Transfer Joints

The results of Test Series 31 for a steel TaperLok in a titanium low-load-transfer joint indicated a higher degree of scatter than is generally obtained for aluminum joints, as noted by the standard deviation and r^2 values (Figure B-34).

A similar curve for the HiTigue fastener system is not available as fasteners one grip length shorter than necessary were mistakenly installed in the specimens. The error was not detected until testing had started.

All failures were occurring at the outer joint surface on the nut side of the joint where there was no fastener interference.

Although the curve fit for the mandrelized system was very good, the shape of the curve at high stresses is somewhat unusual and unexplained (Figure B-35).

The addition of test data from Test Series 52 (R = + 0.1) to the data from Test 31 (R = + 0.25) for the mandrelized system had little effect upon the curve equation and indicated that the stress parameter was adequate for titanium joints as well as aluminum joints (Figure B-36).

7.2. Consideration of Variables

In order to maintain continuity, the secondary variables discussed earlier will be examined for each fastener system separately with general comparisons between systems presented in a later section.

7.2.1. TaperLok Secondary Variables

The maximum interference condition provided decidedly higher life and, in fact, had one value outside of the 90 percent population band. The effect of minimum and maximum interference levels upon fatigue life is illustrated in Figure C-1.

A reduction in t/D ratio produced higher fatigue life for this fastener system, especially at positive stress ratios (Figure C-2). Again, data fell outside of the 90 percent population band.

A reduction in fastener size may have possibly provided a slight increase in fatigue life--but not enough to exceed the 90 percent population band (Figure C-3).

The effects of protruding-head fasteners compared to flush-head fasteners were very small, if not nonexistent, at high t/D ratios (Figure C-4).

The effect of a titanium fastener and a reduced t/D combination produced a slight increase in life for specimens tested at positive stress ratios; however, the trend did not exceed the 90 percent population limits (Figure C-5).

There appears to be a slight tendency toward increased fatigue life for protruding head fasteners in thinner stackups (Figure C-6).

7.2.2. HiTigue Secondary Variables

The HiTigue fastener system was apparently somewhat more sensitive to installation conditions than the TaperLok. In this case, the maximum interference-level data remained scattered around the mean line, but the minimum level data all fell below the line with one value outside the 90 percent population limit (Figure C-7).

The joint fatigue life for this fastener system definitely improved in thinner joints with 5 of the 11 (45 percent) data points falling outside of the 90 percent population limit (Figure C-8).

Interpretation of fastener size effects was somewhat clouded by the behavior of the 3/16-inch-diameter data. It appeared that two failure modes controlled the joint behavior. At low stress, fatigue life of the smaller fastener joint was definitely increased with failures occurring at the fastener head or fay surface. At high stress, fatigue life was somewhat reduced with failures occurring along the fastener shank. Increasing the fastener size to $\frac{1}{2}$ -inch diameter appeared to have no effect (Figure C-9).

Data for the HiTigue system confirmed an increase in life with thinner joints and again primarily at positive stress ratios (Figure C-10).

Positive stress ratio data for the protruding-head fastener in thick joints ($t/D \sim 1.5$) fell on both sides of the mean line with a trend for reduced life with reduced stress when compared to the mean line. However, all positive stress ratio data fell within the 90 percent population band. This same trend is applicable to the negative stress ratio; however, one point fell outside the 90 percent population band indicating a definite positive effect (Figure C-11).

A study of the effects of protruding-head fasteners in thin joints $(t/D \sim 0.5)$ showed that the data for both stress ratios fell outside the 90 percent population limit indicating that protruding-head fasteners in thin sheets did, indeed, provide life increases over the baseline thick sheet, flush-head conditions (Figure C-12).

7.2.3. Mandrelized System Secondary Variables

The findings of the previously mentioned Boeing study, in that fatigue life was definitely reduced with lower levels of cold work, was supported by the data shown in Figure C-13. Unfortunately, maximum levels of cold work could not be obtained as the mandrel pulling shank was too large to fit into the reduced hole size required for maximum cold-work levels.

As with the other systems, fatigue life increases were indicated due to reduced sheet thickness. In this instance, stress ratio effects were

not as prevalent as was the case with the other two fastener systems (Figure C-14). The test data indicated an increase in fatigue life for reduced fastener sizes (Figure C-15).

A high degree of scatter in the fatigue data was indicated when titanium fasteners were installed in thin joints as the positive stress ratio data fell outside of both sides of the 90 percent population band. The negative stress ratio data did show an effect for increased life, especially at higher stress levels. Hence, one would conjecture that the overall effect of reduced sheet thickness and titanium fasteners was one of increased life (Figure C-16), as with the other two systems.

The effects of protruding-head fasteners in thick sheets were shown to be negligible (Figure C-17), as was the case with the other two fastener systems.

Again, as shown for the other two fastener systems, a reduction of sheet thickness and use of protruding-head fasteners provided a definite increase in fatigue life (Figure C-18).

7.2.4. Titanium Joint Secondary Variables

The effect of interference level on titanium joints is shown for the TaperLok in Figure C-19. It appears that maximum interference reduced life at lower stresses while minimum interference showed very little effect.

The effect of reduced titanium joint thickness appears to be negligible and the data for the reduced t/D ratio belongs in the same family as Test Series 31 (Figure C-20).

Figures C-21 and C-22 present data for Test Series 33 and 35, respectively, for the HiTigue as compared to the TaperLok baseline curve (Test Series 31). It is apparent that had the Test Series 31 curve for the HiTigue fastener been generated, it would have been substantially different from the TaperLok curve. This is evidenced by the fact that equivalent Figures C-19 and C-20 for the TaperLok system show data falling generally within the 90 percent population band.

The effect of the reduced titanium joint thickness of Test Series 35 for the mandrelized system was compared to the combined baseline of Series 31 and 52. There was a definite trend in the direction of reduced life at lower operating stress levels (Figure C-23). This trend was similar to, but more extreme than, that observed for the same TaperLok test series (Figure C-20).

7.3. Summary of Fatigue Results

As discussed earlier, the fact that S-N data for all three fastener systems could be combined on one S-N curve indicated that there was very little difference in the fatigue life behavior of the systems for the baseline condition. It is very unlikely that these results would have been possible if careful attention had not been paid to test specimen preparation. Once again, the baseline condition was defined as a 3/8-inch diameter (D) flush-head fastener installed at the nominal (mean) interference level in an aluminum or titanium low-load-transfer specimen, with single sheet thickness (t) such that the t/D ratio was approximately 1.5. Fatigue testing was conducted at stress ratios of \pm 0.25, + 0.1, and - 1.0.

Analysis of the results of secondary variable tests (presented in Appendix C) revealed the following:

- Minimum and maximum installation conditions had a definite effect upon fatigue life for all three fastener systems.
- Reduced joint sheet thicknesses resulted in an increase of fatigue life of aluminum joint specimens (possibly due to better hole preparation in this sheet) and yielded a slight reduction in life for those titanium joints tested at lower stress levels (possibly due to the increased data scatter in titanium joint material).
- Joints assembled with protruding-head fasteners when compared to these assembled with flush head fasteners, showed very slight increases in fatigue life in thick joints where the percent increase in net section area is small and a fairly substantial increase in fatigue life when testing was conducted on thinner joints, where the relative increase in net section area is larger.

8. STATIC-JOINT TESTS

Static-joint tests were conducted using universal testing machines and an LVDT-type extensometer. Yield loads were determined from the autographic load-deflection record by the 0.2-percent-offset method when the failure mode and ultimate load indicated sheet material tensile failure or by the 0.04D (where D is the nominal fastener diameter) offset method when the fastener failed. The tables in Appendix D report critical dimensions, yield and ultimate loads, and gross section stresses.

The magnitude of net section stresses indicated that full material strength was developed for low-load-transfer joints. This is indeed fortunate in that the initial test of a titanium low-load-transfer joint resulted in severe damage to the gripping jaws and jaw adjustment mechanism, hence making further testing impossible. However, titanium material certification data make it possible to compute either net or gross section yield and ultimate loads with a high degree of confidence.

Analysis of the high-load-transfer static-joint data indicated the need to develop such data for any joints included in future programs as net and gross section stress did not compare well with material strength data. This was to be expected as this joint was subjected to severe bending-static-joint failures generally consist of a combination of fastener and joint material failure modes.

9. SHEET MATERIAL PROPERTIES

Sheet material fatigue data and S-N curves are reported in Appendix E along with material certifications. The data are somewhat lower than that supplied by $Alcoa^{(12)}$; however, the Alcoa data were for smooth-machined tensile bars and one would expect to observe some reduction in fatigue life when testing mill-quality plate specimens.

10. RECOMMENDED PRESENTATION FORMAT

The primary concern when considering possible joint fatigue data presentation formats is that of providing the design engineer data in the most understandable manner. It was shown earlier that the stress parameter,

 $S_{max}\sqrt{1-R}$, provides excellent data consolidation for the life range of 3,000 to 10 million cycles. In addition, the use of this parameter makes it possible to obtain fatigue life information for any number of stress ratios from one S-N type curve. The use of the 90 percent confidence--90 percent population bands on the S-N curve provide an immediate assessment of data scatter.

It is recommended that the proposed MIL-HDBK-5 presentation format, shown in Figure 8, be utilized. It provides for future addition of equivalent fastener systems as well as an assessment of the effects of variables which may be confirmed, if necessary, for specific applications. If this approach is unacceptable, the necessary data may be extracted from the curve in Figure 8 and a modified constant life diagram can be constructed as shown in Figure 9. This format is more familiar to the design engineer, but does not contain any indications of data scatter.

11. RECOMMENDED DATA GENERATION PROGRAM

Based upon the findings of this program, it is recommended that fastener systems proposed for future inclusion in the joint fatigue-life section of MIL-HDBK-5 be subjected to an experimental program to include the following tests:

- (1) One S-N curve consisting of a minimum of 12 specimens at each of two stress ratios (24 specimens)
- (2) Two specimens at each of two load levels for minimum and maximum installation conditions (8 specimens)
- (3) Two specimens of reduced thickness at each of two load levels and two stress ratios (8 specimens)
- (4) Two specimens at each of two load levels for one larger and one smaller fastener diameter than tested in (1) above (8 specimens)
- (5) Two static-joint-strength specimens for each joint thickness and fastener diameter (8 specimens)
- (6) Should a second fastener material be included--9 specimens at each of two stress ratios in the form of an S-N curve (18 specimens).

EFFECTS OF JOINT VARIABLES

Fastener Systems in Above Data Population

<u>Variable</u>	TaperLok ^a	<u>HiTigue</u> b	Mandrelized Hole
Min/Max Interference	Max > Mean	Min < Mean	Min < 90% Limit
.5 t/D	> Mean	> Mean	> Mean
Protruding Head	> Mean	> 90% Limit	> 90% Limit
3/16 Diameter	> Mean	> Mean	> Mean

Manufacturer's Part Numbers: TLD100, TLV100, TLD200, TLV200-6 pins, CPL1001 nut.

FIGURE 8. PROPOSED MIL-HDBK-5 PRESENTATION FORMAT

Manufacturer's Part Numbers: HLT35, HLT34 pins, with HL1399 collars, HLT 11, HLT10-6 pins, HL97 collars.

Manufacturer's Part Numbers: ST5300 CBS sleeves, HL11, HL645, HL10, HL644 pins, HL97 collars.

FIGURE 9. CONSTANT LIFE DIAGRAM

The above program should be repeated for each joint material and configuration proposed for inclusion in MIL-HDBK-5. The initial step in data analysis would be to determine if regression curve-fitting techniques provided a curve equation similar to that for Figure 8. If it did, the second step would be to make a direct comparison to Figure 8 and determine if the new curve belonged in the data family. A good fit would allow listing the fastener in Figure 8 along with variable-effect statements. If the fit with Figure 8 was not acceptable, a new curve would have to be added to the Handbook. In the event the Figure 9 format is selected, the constant life diagram could be constructed from information contained in the Figure 8 format.

12. CONCLUSIONS AND RECOMMENDATIONS

The results of this program cover a number of different areas and provide the necessary background for the initiation of several new programs. However, the following conclusions can be drawn from the results:

- Stress ratio effects can be collapsed making it possible to describe several sets of fatigue test data with differing stress ratios with one curve. This makes it possible to publish a substantial quantity of statistically confident fatigue design data in MIL-HDBK-5 in a limited amount of space and also provides for future inclusion of additional data for other fastener systems.
- Fatigue design data developed for relatively thick joints $(t/D \sim 1.5)$ provides a somewhat conservative estimate of the fatigue life of thinner joints.
- Fatigue design data developed with flush-head fasteners provides a slightly conservative estimate of the fatigue lives of joints fastened with protruding-head fasteners.
- The high- and medium-load-transfer joints made up from thick sheets exhibit sufficient bending so as to cloud fastener effects.

As a result of the above, it is recommended that:

- A proposal be prepared for presentation to the MIL-HDBK-5 Coordination Group recommending inclusion of fastened joint fatigue life design data in Chapter 8 of the Handbook. It is also recommended that the presentation format be similar to that of Figure 8 of this report.
- Efforts should be directed toward the development of mediumand high-load-transfer specimens which have reduced bending stresses in thick joints. An additional objective of this effort would be the investigation of possible consolidation of data for joints with differeing levels of load transfer.
- A program be initiated to consider the possible inclusion of other fastener systems in the proposed MIL-HDBK-5 joint fatigue design data section of Chapter 8. Systems with differing functional mechanisms that might be candidates would include the "King Sizing" fastener, the Huck "EXL" system and the Cherry "CPL" nut, to name a few.

13. REFERENCES

- (1) Military Standardization Handbook, MIL-HDBK-5, "Metallic Materials and Elements for Aerospace Vehicle Structures".
- (2) Smith, C. R., "Interference Fasteners for Fatigue Life Improvement", Experimental Mechanics (August, 1965).
- (3) AFFDL-TR-75-93, "Interference-Fit Fastener Investigation", Air Force Flight Dynamics Laboratory (September, 1975).
- (4) Speakman, E. R., "Stress Coining Procedures for Fatigue Improvement", McDonnell Douglas Report MDC J5588 (June, 1972).
- (5) AFML-TR-74-10, "Sleeve Cold Working Fastener Holes", Air Force Materials Laboratory (February, 1974).
- (6) Urzi, R. B., "Standardization of Fatigue Tests of Installed Fastener Systems", Lockheed-California Company Report LR25280, Naval Air Development Center Contract N62269-71-C-0450 (July, 1972).

- (7) AFML-TR-73-195, "Development of Fatigue Test Standards and Mechanical Property Data on Interference-Fit Fastener Systems", Air Force Materials Laboratory (August, 1973).
- (8) Rice, R. C., et al, "Consolidation of Fatigue and Fatigue-Crack-Propagation Data for Design Use", NASA CR-2586 (October, 1975).
- (9) Lipson, C., and Sheth, N., Statistical Design and Analysis of Engineering Experiments, First Edition, McGraw-Hill Book Company, New York (1973), pp 79-81, Table 3.1.
- (10) Smith, K., Watson, P., and Topper, T., "A Stress-Strain Function for the Fatigue of Metals", Journal of Metals, JMLSA, vol 5, no 4 (December, 1970), pp 767-778.
- (11) Walker, K., "The Effect of Stress Ratio During Crack Propagation and Fatigue for 2024-T3 and 7075-T6 Aluminum", ASTM STP 462, American Society for Testing and Materials (1970), pp 1-14.
- (12) Mehr, P., Spuhler, E., and Mayer, L., Unpublished data, Alcoa Alloy 7075-T73, Alcoa Green Letter, Aluminum Company of America (June, 1969).

APPENDIX A

JOINT FATIGUE TEST RESULTS

FIGURE A-1. FATIGUE FAILURE MODES

7075-T7351 Joint Material

3/8-inch-diameter Fastener

Cyclic Gross Stress: 17.5 ksi

Cycles to Failure: 910,710

Crack Initiation: (1) Top sheet
 at edge of head, (2) Hole
 surface-midthickness.

FIGURE A-2. FAILED ALUMINUM LOW-LOAD TRANSFER SPECIMEN

FIGURE A-4. FAILED ALUMINUM LOW-LOAD TRANSFER SPECIMEN

Cyclic Gross Stress: 17.9 ksi Cycles to Failure: 378,130 3/8-inch-diameter Fastener

gross section at edge of sheet. Crack Initiation: Fay surface at both edges of hole and

FIGURE A-5. FAILED ALUMINUM LOW-LOAD TRANSFER SPECIMEN

TABLE A-1. 3/8 INCH STEEL TAPERLOK, 7075-T7351 LOW-LOAD TRANSFER SPECIMENS

Specimen Designation: TDF6DA2
Fastener System: TLD100-6 Pin, TLN1001-CPL-6 Nut
Interference Fit: 0.004 Inch Interference Fastener Material: PH13-8Mo Pin, A-286 Nut

Stress Ratio, S_{min}/S_{max} : R = + 0.25 Thickness to Diameter Ratio: t/D = 1.7

Specimen Identification	Max Stress Gross Area, ksi	Cycles to Failure N.F. = No Failure	Mode of Failure(a)	Remarks
TDF6DA2-13	35	95,130	8	
-12	45	21,880	7	
-11	55	2,820	6	
-9	25	453,290	4	
-8	30	120,530	4	
-7	35	49,060	4	
-6	45	32,721	4	
- 5	20	1,480,070	4	
-3	17	2,963,390	4	
-2	14	8,894,490	7	
-1	25	316,710	8	
-14	20	4,411,600	6	

⁽a) See failure mode description.

TABLE A-2. 3/8 INCH STEEL TAPERLOK, 7075-T7351 LOW-LOAD TRANSFER SPECIMENS (Minimum and Maximum Interference Conditions)

Specimen Designation: TDF6DA3

Fastener System: TLD100-6 pin, TLN1001-CPL-6 nut
Interference Fit: 0.003 (minimum) and 0.006 (maximum) inch

Fastener Material: PH13-8Mo pin, A-286 Nut

Stress Ratio, S_{min}/S_{max} : R = + 0.25 Thickness to Diameter Ratio: t/D = 1.7

Specimen Identification	Max Stress Gross Area, ksi	Cycles to Failure N.F. = No Failure	Mode of Failure(a)	R	emarks
TDF6DA3-1	23.1	354,260	1	Minimum	Interference
-3	48.5	13,680	4	"	"
-9	48.5	26,480	4	Maximum	Interference
-10	23.1	377,340	4	11	***
-11	23.1	1,547,620	4	-11	**
-12	23.1	520,950	9	11	11

⁽a) See failure mode description.

TABLE A-3. 3/8 INCH STEEL TAPERLOK, 7075-T7351 LOW-LOAD TRANSFER SPECIMENS

Specimen Designation: TDF6DA4

Fastener System: TLD100-6 Pin, TLN1001-CPL-6 Nut

Interference Fit: 0.004 Inch Interference Fastener Material: PH13-8Mo Pin, A-286 Nut Stress Ratio, Smin/Smax: R = -0.25

Thickness to Diameter Ratio: t/D = 1.7

Specimen Identification	Max Stress Gross Area, ksi	Cycles to Failure N.F. = No Failure	Mode of Failure(a)	Remarks
TDF6DA4-2	15	878,720	7	
-3	25	106,240	1	
-4	20	306,390	9	
-1	35	40,000	9	
-5	45	7,170	4	
-6	20	230,090	4	
-7	35	36,030	2	
-11	11	2,493,270	4	
-12	9	12,242,940	D.N.F.	
-13	50	6,740	4	

⁽a) See failure mode description.

TABLE A-4. 3/8 INCH STEEL TAPERLOK, 7075-T73 LOW-LOAD TRANSFER SPECIMENS

Specimen Designation:

TDF 6DA5

Fastener System:

TLD100-6-Pin, TLN1001-CPL-6 Nut

Interference Fit:

0.004 Inch Interference PH13-8Mo Pin, A-286 Nut

Fastener Material: Stress Ratio, Smin/Smax:

R = + 0.25 or - 0.25

Thickness to Diameter Ratio:

t/D = 0.5

		N.F. = No Failure	Failure(a)	Remarks
		R = + 0.25		
TDF6DA5-4	48.5	33,230	1	
-3	48.5	19,980	4	
-12	34.6	136,340	2	
-5	34.6	112,640	5	
-1	23.1	1,685,200	4	
-7	23.1	1,833,560	2	
		R = -0.25		
TDF6DA5-10	37.6	30,190	1	
-11	37.6	31,590	1	
-9	26.8	123,366	4	
-8	26.8	70,310	1	
-2	17.9	554,920	4	
- 6	17.9	377,790	9	Grip Failure

⁽a) See failure mode description.

TABLE A-5. 3/16 INCH STEEL TAPERLOK, 7075-T73 LOW-LOAD TRANSFER SPECIMENS

Specimen Designation: TDF3DA6

Fastener System: TLD100-3 Pin, TLN1001-CPL-3 Nut

Interference Fit: 0.0025 Inch Interference

Fastener Material: PH13-8Mo Pin, A-286 Nut Stress Ratio, S_{min}/S_{max} : R = + 0.25 Thickness to Diameter Ratio: t/D = 1.4

Specimen Identification	Max Stress Gross Area, ksi	Cycles to Failure N.F. = No Failure	Mode of Failure(a)	Remarks
TDF3DA6-3	48.5	30,950	3	
-7	48.5	19,030	3	
-5	48.5	29,940	3	
-2	23.1	786,640	6	
-1	23.1	828,700	4	
-8	23.1	397,810	9	Grip Failure

⁽a) See failure mode description.

TABLE A-6. 3/8 INCH STEEL TAPERLOK, 7075-T7351 HIGH-LOAD TRANSFER SPECIMENS

Specimen Designation: TDF6MA9

Fastener System: TLD100-6 Pin, TLD1001-CPL-6 Nut

Interference Fit: 0.004 Inch Interference

Fastener Material: PH13-8Mo Pin, A=286 Nut Stress Ratio, S_{min}/S_{max} : R=+0.25 Thickness to Diameter Ratio: t/D=1.7

Specimen Identification	Max Stress Gross Area, ksi	Cycles to Failure N.F. = No Failure	Mode of Failure(a)	Remarks
TDT()() 0 1/				
TDF6MA9-14	12.5	275,290	9	
-13	15	275,000	4	
-12	25	11,650	4	
-10	20	44,840	4	
- 9	10	1,609,940	9	
-15	7.5	651,290	4	

⁽a) See failure mode description.

TABLE A-7. 3/8 INCH STEEL TAPERLOK, 7075-T7351 HIGH-LOAD TRANSFER SPECIMENS

Specimen Designation: TDF6MA10

Fastener System: TLD100-6 Pin, TLN1001-CPL-6 Nut

Interference Fit: 0.004 Inch Interference
Fastener Material: PH13-8Mo Pin, A-286 Nut
Stress Ratio, S_{min}/S_{max}: R = -0.25
Thickness to Diameter Ratio: t/D = 1.7

Specimen Identification	Max Stress Gross Area, ksi	Cycles to Failure N.F. = No Failure	Mode of Failure(a)	Remarks
TDF6MA10-9	5	2,333,330	9	
-8	5	1,880,510	9	
-7	7.5	824,910	9	
-6	25	7,160	4	
-4	10	259,030	9	
-3	12.5	212,250	4	
-2	15	54,540	4	
-1	20	35,000	9	

⁽a) See failure mode description.

TABLE A-8. 3/8 INCH TITANIUM TAPERLOK, 7075-T7351 LOW-LOAD TRANSFER SPECIMENS

Specimen Designation: TVF6DA22
Fastener System: TLV100-6 Pin, TLN1001L-6 Nut
Interference Fit: 0.004 Inch Interference Fastener Material: 6AL-4V Pin, A-286 Nut

Stress Ratio, S_{min}/S_{max} : R = + 0.25Thickness to Diameter Ratio: t/D = 1.7

Specimen Identification	Max Stress Gross Area, ksi	Cycles to Failure N.F. = No Failure	Mode of Failure(a)	Remarks
TVF6DA22-12	15	3,441,330	4	
-8	30	197,930	9	
-9	20	1,659,490	7A	
-10	20	1,454,480	7A	
-2	50	9,890	3	
-1	10	12,620,850	D.N.F.	
- 5	35	97,570	5	
-3	40	63,100	6	
-7	15	580,600	8	
-6	25	188,220	8	
-4	17.5	540,630	8	
-12	15	3,441,340	4	
-11	40	42,470	5	

⁽a) See failure mode description.

TABLE A-9. 3/8 INCH TITANIUM TAPERLOK, 7075-T7351 LOW-LOAD TRANSFER SPECIMENS

TVF6DA23

Fastener System:

TLV100-6 Pin, TLN1001L-6 Nut

Interference Fit: 0.004 Inch Interference

Fastener Material: 6AL-4V Pin, A-286 Nut

Stress Ratio, Smin/Smax:

R = -0.25

t/D = 1.7Thickness to Diameter Ratio:

Specimen Identification	Max Stress Gross Area, ksi	Cycles to Failure N.F. = No Failure	Mode of Failure(a)	Remarks
TVF6DA23-4	20	2/5 552	5	
-2		245,552		
	50	7,530	6	
-1	15	397,800	4 & 7A	
-7	40	25,820	2	
-3	30	89,420	5	
- 5	25	166,270	5	
-6	12.5	1,412,930	4	
-9	11.5	8,594,130	9	Grip Failure
-8	15	1,215,870	4	

⁽a) See failure mode description.

TABLE A-10. 3/8 INCH TITANIUM TAPERLOK, 7075-T73 LOW-LOAD TRANSFER SPECIMENS

Specimen Designation: TVF6DA25

Fastener System: TLV100-6 Pin, TLN1001L-6 Nut

Interference Fit:

0.004 Inch Interference

Fastener Material:

6AL-4V Pin, A-286 Nut R = + 0.25 or - 0.25

Stress Ratio, Smin/Smax: Thickness to Diameter Ratio:

t/D = 0.5

Specimen Identification	Max Stress Gross Area, ksi	Cycles to Failure N.F. = No Failure	Mode of Failure(a)	Remarks
		R = + 0.25		
TVF6DA25-1	48.5	12,010	2	
-2	34.6	142,470	6	
-7	23.1	329,860	2	
-8	48.5	15,280	2	
-9	34.6	159,500	6	
-11	23.1	681,810	2	
		R = -0.25		
TVF6DA25-3	17.9	292,890	9	
-4	26.8	33,490	2	
- 5	37.6	23,280	2	
-6	26.8	52,910	2	
-10	37.6	15,400	8	
-12	17.9	351,230	2	

⁽a) See failure mode description.

TABLE A-11. 3/8 INCH STEEL TAPERLOK, 6AL-4V M.A. LOW-LOAD TRANSFER SPECIMENS

Specimen Designation: TDF6DT31

Fastener System: TLD100-6 Pin, TLN1001L-6 Nut

Interference Fit: 0.004 Inch Interference
Fastener Material: PH13-8Mo Pin, A-286 Nut

Stress Ratio, S_{min}/S_{max} : R = + 0.25 Thickness to Diameter Ratio: t/D = 1.7

Specimen Identification	Max Stress Gross Area, ksi	Cycles to Failure N.F. = No Failure	Mode of Failure(a)	Remarks
TDF6DT31-8	58	819,230	9	Grip Failure
-9	70	122,050	D.N.S.	
-2	60	293,650	6	
-7	60	730,740	3 & 6	
-10	70	85,030	7	
-4	90	12,380	2	
-3	80	21,620	3	
-6	50	3,463,770	D.N.F.	
-5	60	647,000	4	

⁽a) See failure mode description.

TABLE A-12. 3/8 INCH STEEL TAPERLOK, 6AL-4V M.A. LOW-LOAD TRANSFER SPECIMENS

TDF6DT33

Fastener System:

TLD100-6 Pin, TLN1001L- Nut

Interference Fit:

0.003 (Minimum) and 0.006 (Maximum) Inch PH13-8Mo Pin, A-286 Nut $\,$

Fastener Material:

Stress Ratio, Smin/Smax:

R = + 0.25

t/D = 1.7Thickness to Diameter Ratio:

Specimen Identification	Max Stress Gross Area, ksi	Cycles to Failure N.F. = No Failure	Mode of Failure(a)	Re	emarks
TDF6DT33-6	55	839,470	4	Minimum	Interference
-8	55	914,090	4	11	11
-2	55	331,620	2	Maximum	Interferenc
-4	55	391,950	6	- 11	11
-1	80	111,670	1	- 11	***
					×

⁽a) See failure mode description.

TABLE A-13. 3/8 INCH TITANIUM TAPERLOK, 6AL-4V M.A. LOW-LOAD TRANSFER SPECIMENS

Specimen Designation: TVF6DT35

Fastener System: TLV100-6 Pin, TLN1001L-6 Nut

Interference Fit: 0.004 Inch Interference
Fastener Material: 6AL-4V Pin, A-286 Nut

Stress Ratio, S_{min}/S_{max} : R = + 0.25Thickness to Diameter Ratio: t/D = 0.6

Specimen Identification	Max Stress Gross Area, ksi	Cycles to Failure N.F. = No Failure	Mode of Failure(a)	Remarks
TVF6DT35-5	80	66,630	3	
-1	80	58,710	6	
-3	65	175,790	6	
-4	65	143,390	6	
-6	55	1,493,130	3	
-2	55	1,836,750	D.N.F.	

⁽a) See failure mode description.

TABLE A-14. 3/8 INCH STEEL TAPERLOK, 7075-T7351 LOW-LOAD TRANSFER SPECIMENS

Specimen Designation: TDP6DA43

Fastener System: TLD200-6 Protruding Head Pin, TLN1001-CPL-6 Nut

Interference Fit: 0.004 Inch Interference
Fastener Material: PH13-8Mo Pin, A-286 Nut
Stress Ratio, Smin/Smax: R = + 0.25 or - 0.25

Thickness to Diameter Ratio: t/D = 1.7

Specimen Identification	Max Stress Gross Area, ksi	Cycles to Failure N.F. = No Failure	Mode of Failure(a)	Remarks
		R = + 0.25		
TDP6DA43-1	23.1	488,940	4	
-3	23.1	235,680	4	
-4	34.6	144,320	2	
-5	34.6	52,590	6	
-2	48.5	12,870	6	
-7	48.5	18,270	6	
		R = -0.25		
TDP6DA43-6	17.9	421,710	7A	
-11	17.9	231,750	4	
-9	26.8	80,260	6	
-12	26.8	96,590	4	
-8	37.6	20,600	3	
-10	37.6	14,760	4	

⁽a) See failure mode description.

TABLE A-15. 3/8 INCH STEEL TAPERLOK, 7075-T7351 LOW-LOAD TRANSFER SPECIMENS

Specimen Designation: TDP6DA45

Fastener System: TLD200-6 Protruding Head Pin, TLN1001-CPL-6 Nut

Interference Fit: 0.004 Inch Interference Fastener Material: PH13-8Mo Pin, A-286 Nut Stress Ratio, S_{min}/S_{max} : R = + 0.25 or - 0.25 Thickness to Diameter Ratio: t/D = 0.5

Specimen Identification	Max Stress Gross Area, ksi	Cycles to Failure N.F. = No Failure	Mode of Failure(a)	Remarks
		R = + 0.25		
TDP6DA45-2A	23.1	609,580	7A	
-11A	23.1	545,980	3	
-4A	34.6	149,740	7A	
-8A	34.6	120,200	7A	
-12A	48.5	21,840	6	
-1A	48.5	10,820	2	
		R = -0.25		
TDP6DA45-9A	17.9	482,810	4 & 6	
-3A	17.9	521,980	9	
- 5	26.8	147,220	7A	
-6	26.8	111,790	6	
-10A	37.6	21,870	4	
-7A	37.6	15,750	4	

⁽a) See failure mode description.

TABLE A-16. 3/8 INCH STEEL TAPERLOK, 7075-T7351 LOW-LOAD TRANSFER SPECIMENS

Specimen Designation: TDF6DA48

Fastener System: TLD100-6 Pin, TLN1001-CPL-6 Nut

Interference Fit: 0.004 Inch Interference

Fastener Material: PH13-8Mo Pin, A-286 Nut Stress Ratio, S_{min}/S_{max} : R = + 0.1 Thickness to Diameter Ratio: t/D = 1.7

Specimen Identification	Max Stress Gross Area, ksi	Cycles to Failure N.F. = No Failure	Mode of Failure(a)	Remarks
TDF6DA48-4A	48.5	12,670	6	
-2A	48.5	19,160	4	
-3A	23.1	255,010	9	
-1A	23.1	314,230	9	

⁽a) See failure mode description.

TABLE A-17. 3/8 INCH STEEL TAPERLOK, 7075-T7351 LOW-LOAD TRANSFER SPECIMENS

Specimen Designation: TDF6DA49
 Fastener System: TLD100-6 Pin, TLN1001-CPL-6 Nut
 Interference Fit: 0.004 Inch Interference Fastener Material: PH13-8Mo Pin, A-286 Nut

Stress Ratio, S_{min}/S_{max} : R = - 1.0 Thickness to Diameter Ratio: t/D = 1.7

Specimen Identification	Max Stress Gross Area, ksi	Cycles to Failure N.F. = No Failure	Mode of Failure(a)	Remarks
TDF6DA49-2A	16.3	265,520		1 & 4
-1A	16.3	140,420		D.N.S.
-3	29.7	25,450		4
-4A	29.7	28,920		6

⁽a) See failure mode description.

TABLE A-18. 3/8 INCH STEEL HITIGUE, 7075-T7351 LOW-LOAD TRANSFER SPECIMENS

SDF6DA2

Fastener System: HLT35-12 Pin, HL1399 Collar Interference Fit: 0.0045 Inch Interference Fastener Material: PH13-8Mo Pin, Steel Collar

Stress Ratio, S_{min}/S_{max} : R = + 0.25

Thickness to Diameter Ratio: t/D = 1.7

Specimen Identification	Max Stress Gross Area, ksi	Cycles to Failure N.F. = No Failure	Mode of Failure(a)	Remarks
SDF6DA2-1	20	822,670	D.N.S.	
-2	30	84,730	D.N.S.	
-3	25	246,100	4	
-4	35	59,550	D.N.S.	
-5	40	37,140	D.N.S.	
-6	25	346,280	4	
-7	50	7,130	4	
-8	40	29,880	D.N.S.	
-9	17.5	508,260	9	
-10	17.5	910,710	1	_
-11	12.5	8,636,110	9	Grip Failure
-12	30	56,850	4	
-13	45	7,290	4	
-15	55	1,440	6	
				,

⁽a) See failure mode description.

TABLE A-19. 3/8 INCH STEEL HITIGUE, 7075-T7351 LOW-LOAD TRANSFER SPECIMENS, MINIMUM AND MAXIMUM INTERFERENCE CONDITIONS

Specimen Designation: SDF6DA3

Fastener System: HLT35-12 Pin, HL1399 Collar

Interference Fit: 0.002 (Minimum) and 0.006 (Maximum) Inch Fastener Material: PH13-8Mo Pin, Steel Collar Stress Ratio, Smin/Smax: R = + 0.25

Thickness to Diameter Ratio: t/D = 1.7

Specimen Identification	Max Stress Gross Area, ksi	Cycles to Failure N.F. = No Failure	Mode of Failure(a)	R	emarks
SDF6DA3-1	36.4	26,220	4	Minimum	Interference
-2	36.4	14,920	4	.11	11
-3	36.4	20,980	6	11	11
-4	23.1	290,570	9	11	11
-5	23.1	447,950	6	11	11
-6	23.1	207,200	6	- 11	11
-7	36.4	35,540	4	Maximum	Interference
-8	34.6	72,350	7A	11	11
-9	36.4	37,110	4	11	***
-10	23.1	306,230	5		11
-11	23.1	543,960	8	11	11
-12	23.1	311,080	5	11	11

⁽a) See failure mode description.

TABLE A-20. 3/8 INCH STEEL HITIGUE, 7075-T7351 LOW-LOAD TRANSFER SPECIMENS

SDF6DA4

Fastener System: Interference Fit: HLT35-12 Pin, HL1399 Collar 0.0045 Inch Interference PH13-8Mo Pin, Steel Collar

Fastener Material: Stress Ratio, S_{min}/S_{max} :

R = -0.25

Thickness to Diameter Ratio:

t/D = 1.7

Specimen Identification	Max Stress Gross Area, ksi	Cycles to Failure N.F. = No Failure	Mode of Failure(a)	Remarks
SDF6DA4-1	30	43,460	6	
-2	15	1,295,710	9	Grip Failure
-3	40	11,220	3	
-4	20	169,910	9	
-5	20	189,620	5	
-6	35	32,430	4	
-7	25	58,790	3	
-8	50	3,830	6	
-9	8	11,361,420	D.N.F.	
-10	10	2,482,450	6	
-11	15	570,180	1	
-12	30	61,230	1	

⁽a) See failure mode description.

TABLE A-21. 3/8 INCH STEEL HITIGUE, 7075-T73 LOW-LOAD TRANSFER SPECIMENS

SDF6DA5

Fastener System:

HLT35-12 Pin, HL1399 Collar

Interference Fit: Fastener Material:

0.0045 Inch Interference PH13-8Mo Pin, Steel Collar

Stress Ratio, S_{min}/S_{max} : R = + 0.25 or - 0.25

Thickness to Diameter Ratio:

t/D = 0.5

Specimen Identification	Max Stress Gross Area, ksi	Cycles to Failure N.F. = No Failure	Mode of Failure(a)	Remarks
		R = + 0.25		
SDF6DA5-1	23.1	992,490	2	
-2	48.5	19,320	6	
- 5	23.1	1,279,080	4	
-8	34.6	177,840	8	
-11	34.6	212,280	9	
-12	48.5	19,430	2	
		R = -0.25		
SDF6DA5-4	48.5	6,220	1	
-6	34.6	45,100	1	
-7	37.6	23,830	5	
-10	17.9	623,030	4	
-13	17.9	758,950	5	
-14	26.8	240,100	8	

⁽a) See failure mode description.

TABLE A-22. 3/16 INCH STEEL HITIGUE, 7075-T73 LOW-LOAD TRANSFER SPECIMENS

SDF3DA6

Interference Fit:

Fastener System: HLT35-6 Pin, HL1399 Collar 0.0045 Inch Interference

Fastener Material: Stress Ratio, S_{min}/S_{max} : R = + 0.25

PH13-8Mo Pin, Steel Collar

Thickness to Diameter Ratio: t/D = 1.4

Max Stress Gross Area, ksi	Cycles to Failure N.F. = No Failure	Mode of Failure(a)	Remarks
23.1	1,038,180	2	
48.5	5,850	6	
48.5	8,610	6	
23.1	1,038,740	1	
48.5	7,060	3	
23.1	774,320	4	
	23.1 48.5 48.5 23.1 48.5	Gross Area, Cycles to Failure N.F. = No Failure 23.1 1,038,180 48.5 5,850 48.5 8,610 23.1 1,038,740 48.5 7,060	Gross Area, Cycles to Failure Mode of Failure (a) 23.1

⁽a) See failure mode description.

TABLE A-22A. 1/2 INCH STEEL HITIGUE, 7075-T7351 LOW-LOAD TRANSFER SPECIMENS

SDF8DA7

Fastener System: HLT35-16 Pin, HL1399 Coll Interference Fit: 0.0045 Inch Interference HLT35-16 Pin, HL1399 Collar

Fastener Material: PH13-8Mo Pin, Steel Collar

Stress Ratio, Smin/Smax:

R = +0.25

Thickness to Diameter Ratio:

t/D = 1.5

Specimen Identification	Max Stress Gross Area, ksi	Cycles to Failure N.F. = No Failure	Mode of Failure(a)	Remarks
SDF8DA7-5	23.1	375,170	1 & 3	
-7	23.1	312.460	3 & 4	

⁽a) See failure mode description.

TABLE A-23. 3/8 INCH STEEL HITIGUE, 7075-T7351 HIGH-LOAD TRANSFER SPECIMENS

SDF6MA9

Fastener System:

HLT35-12 Pin, HL1399 Collar Interference Fit: 0.0045 Inch Interference

Fastener Material: PH13-8Mo Pin, Steel Collar

Stress Ratio, Smin/Smax:

R = + 0.25

t/D = 1.7Thickness to Diameter Ratio:

Specimen Identification	Max Stress Gross Area, ksi	Cycles to Failure N.F. = No Failure	Mode of Failure(a)	Remarks
SDF6MA9-14	7.5	1,647,380	9	
-11	20	26,840	4	
-12	20	27,450	4	
-10	15	112,670	4	
-13	10	310,660	4	
-15	5	4,320,570	9	
-9	25	6,750	4	

⁽a) See failure mode description.

TABLE A-24. 3/8 INCH STEEL HITIGUE, 7075-T7351 HIGH-LOAD TRANSFER SPECIMENS

Specimen Designation: SDF6MA10

Fastener System: HLT35-12 Pin, HL1399 Collar

Interference Fit: 0.0045 Inch Tolerance

Fastener Material: PH13-8Mo Pin, Steel Collar

Stress Ratio, S_{min}/S_{max} : R = - 0.25 Thickness to Diameter Ratio: t/D = 1.7

Specimen Identification	Max Stress Gross Area, ksi	Cycles to Failure N.F. = No Failure	Mode of Failure(a)	Remarks
SDF6MA10-1	7.5	406,050	9	
-2	15	38,020	9	
-3	10	158,490	4	
-4	20	16,490	4	
-5	12.5	82,050	4	
-6	10	366,560	9	
-7	5	3,340,150	9	
-8	25	2,850	4	
-11	5	1,395,900	9	
-10	20	18,220	4	

⁽a) See failure mode description.

TABLE A-25. 3/8 INCH TITANIUM HITIGUE, 7075-T7351 LOW-LOAD TRANSFER SPECIMENS

SVF6DA22

Fastener System: HLT11-12 Pin, HL95 Collar Interference Fit: 0.0045 Inch Interference

Fastener Material:

6AL-4V Pin, A-286 Collar

Stress Ratio, Smin/Smax:

R = + 0.25

Thickness to Diameter Ratio:

t/D = 1.7

Specimen Identification	Max Stress Gross Area, ksi	Cycles to Failure N.F. = No Failure	Mode of Failure(a)	Remarks
SVF6DA22-1	40	27,900	4	
-3	25	126,180	6	
-4	50	4,200	3	
-5	20	1,183,820	7A	
-10	30	143,680	4	
-12	25	234.120	4	
-9	35	105,790	4	
-2	15	1,457,370	2	
-8	15	1,084,370	7A	
-6	12	12,551,720	D.N.F.	
-7	40	21,300	4	
-11	20	876,700	9	Grip Failure

⁽a) See failure mode description.

TABLE A-26. 3/8 INCH TITANIUM HITIGUE, 7075-T7351 LOW-LOAD TRANSFER SPECIMENS

Specimen Designation: SVF6DA23

Fastener System: HLT11-12 Pin, HL97 Collar Interference Fit: 0.0045 Inch Interference Fastener Material: 6AL-4V Pin, A-286 Collar

Stress Ratio, S_{min}/S_{max} : R = -0.25Thickness to Diameter Ratio: t/D = 1.7

Specimen Identification	Max Stress Gross Area, ksi	Cycles to Failure N.F. = No Failure	Mode of Failure(a)	Remarks
SVF6DA23-4	20	256,480	5	
-6	30	66,010	5	
-3	15	431,080	9	Grip Failure
-2	15	979,470	7A	
-8	40	8,490	6	
-7	35	17,170	6	
-9	8	7,240,320	2 & 4	
-5	50	1,790	6	
-1	30	33,280	4	

⁽a) See failure mode description.

TABLE A-27. 3/8 INCH TITANIUM HITIGUE, 7075-T73 LOW-LOAD TRANSFER SPECIMENS

SVF6DA25

Fastener System: Interference Fit: Fastener Material:

HLT11-12 Pin, HL97 Collar 0.0045 Inch Interference 6AL-4V Pin, A-286 Collar

Stress Ratio, Smin/Smax:

R = + 0.25 or - 0.25

Thickness to Diameter Ratio:

t/D = 0.5

Specimen Identification	Max Stress Gross Area, ksi	Cycles to Failure N.F. = No Failure	Mode of Failure(a)	Remarks
		R = + 0.25		
SVF6DA25-1	34.6	127,810	5	
-3	48.5	25,780	1	
-4	48.5	12,220	6	
-6	23.1	835,580	2	
-7	23.1	862,520	1	
-8	34.6	120,720	1	
		R = -0.25		
SVF6DA25-2	26.8	85,190	5	
- 5	17.9	546,810	9	Grip Failure
-9	17.9	669,510	4	
-10	37.6	25,540	1	
-11	37.6	28,670	1	
-12	26.8	90,620	1	

⁽a) See failure mode description.

TABLE A-28. 3/8 INCH STEEL HITIGUE, 6AL-4V M.A. LOW-LOAD TRANSFER SPECIMENS

SDF6DT33

Fastener System:

HLT35-12 Pin, HL-97 Collar

Interference Fit:

0.002 (Minimum) and 0.006 (Maximum) Inch

Fastener Material:

PH13-8Mo Pin, A-286 Collar

Stress Ratio, Smin/Smax:

R = + 0.25

Thickness to Diameter Ratio:

t/D = 1.7

Specimen Identification	Max Stress Gross Area, ksi	Cycles to Failure N.F. = No Failure	Mode of Failure(a)	Remark	s
SDF6DT33-5	55	168,260	3	Minimum Inte	rference
-8	55	213,200	3		1
-2	55	162,570	4	Maximum Inte	rference
-1	55	245,530	4		,

⁽a) See failure mode description.

TABLE A-29. 3/8 INCH STEEL HITIGUE, 6AL-4V M.A. LOW-LOAD TRANSFER SPECIMENS

SDF6DT35

Fastener System:

HLT35-12 Pin, HL95 Collar Interference Fit: 0.0045 Inch Interference PH13-8MO Pin, A-286 Collar

Fastener Material: Stress Ratio, Smin/Smax:

R = + 0.25

Thickness to Diameter Ratio:

t/D = 0.6

Specimen Identification	Max Stress Gross Area, ksi	Cycles to Failure N.F. = No Failure	Mode of Failure(a)	Remarks
SDF6DT35-5	80	25,810	D.N.S.	
-2	80	54,120	1 & 2	
-1	65	77,290	2	
-3	65	73,130	6	
-6	55	141,990	4	
-4	55	90,550	6	

⁽a) See failure mode description.

TABLE A-30. 3/8 INCH TITANIUM HITIGUE, 6AL-4V M.A. LOW-LOAD TRANSFER SPECIMENS

Specimen Designation: SVF6DT41

Fastener System: HLT11-12 Pin, HL-97 Collar Interference Fit: 0.0045 Inch Interference Fastener Material: 6AL-4V Pin, A-286 Collar

Stress Ratio, S_{min}/S_{max} : R = + 0.25 Thickness to Diameter Ratio: t/D = 1.7

Specimen Identification	Max Stress Gross Area, ksi	Cycles to Failure N.F. = No Failure	Mode of Failure(a)	Remarks
SVF6DT41-3	65	79,370	4	
-6	65	72,870	4	
-8	55	184,460	2	
-4A	55	269,820	D.N.S.	

⁽a) See failure mode description.

TABLE A-31. 3/8 INCH STEEL HITIGUE, 7075-T7351 LOW-LOAD TRANSFER SPECIMENS

SDP6DA43

Fastener System:

HLT 34-12 Protruding Head Pin, HL1399 Collar

Interference Fit:

0.0045 Inch Interference

Fastener Material:

PH13-8Mo Pin, Steel Collar R = + 0.25 or - 0.25

Stress Ratio, S_{min}/S_{max} : Thickness to Diameter Ratio:

t/D = 1.7

Specimen Identification	Max Stress Gross Area, ksi	Cycles to Failure N.F. = No Failure	Mode of Failure(a)	Remarks
		R = + 0.25		
SDP6DA43-9	48.5	17,550	4	
-7	48.5	26,380	4	
-4	34.6	54,250	5	
-6	34.6	72,400	1	
-2	23.1	309,790	5	
- 5	23.1	206,870	8	
		R = -0.25		
SDP6DA43-10	37.6	31,490	5	
-1	37.6	38,940	1	
-11	26.8	96,440	8	
-3	26.8	73,600	4	
-8	17.9	364,980	8	
-12	17.9	378,130	4	

⁽a) See failure mode description.

TABLE A-32. 3/8 INCH STEEL HITIGUE, 7075-T73 LOW-LOAD TRANSFER SPECIMENS

Specimen Designation: SDP6DA45

Fastener System: HLT34-12 Protruding Head Pin, HL1399 Collar

Interference Fit: 0.0045 Inch Interference Fastener Material: PH13-8Mo Pin, Steel Collar

Stress Ratio, S_{min}/S_{max} : R = + 0.25 or - 0.25

Thickness to Diameter Ratio: t/D = 0.5

Specimen Identification	Max Stress Gross Area, ksi	Cycles to Failure N.F. = No Failure	Mode of Failure(a)	Remarks
		R = + 0.25		
SDP6DA45-9	23.1	1,346,340	4	
			4	
-7	23.1	330,560		
-3	34.6	131,100	9	
-10	34.6	106,610	2	
-12	48.5	14,840	4	
-5	48.5	19,590	7	
		R = -0.25		
SDP6DA45-11	17.9	1,064,860	7	
-1	17.9	645,230	5	
-6	26.8	102,840	6	
-4	26.8	96,680	6	
-8	37.6	40,400	5	
-2	37.6	37,220	3	

⁽a) See failure mode description.

TABLE A-33. 3/8 INCH STEEL HITIGUE, 7075-T7351 LOW-LOAD TRANSFER SPECIMENS

SDF6DA48

Fastener System:

HLT35-12 Pin, HL1399 Collar Interference Fit: 0.0045 Inch Interference Fastener Material: PH13-8Mo Pin, Steel Collar

Stress Ratio, S_{min}/S_{max} : R = + 0.1

Thickness to Diameter Ratio: t/D = 1.7

Specimen Identification	Max Stress Gross Area, ksi	Cycles to Failure N.F. = No Failure	Mode of Failure(a)	Remarks
SDF6DA48-2	23.1	158,630	6	
-4	23.1	200,940	2	
-3	48.5	6,800	6	
-1	48.5	14,460	4	

⁽a) See failure mode description.

TABLE A-34. 3/8 INCH STEEL HITIGUE, 7075-T7351 LOW-LOAD TRANSFER SPECIMENS

Specimen Designation: SDF6DA49

Fastener System: HLT35-12 Pin, HL1399 Collar Interference Fit: 0.0045 Inch Interference

Fastener Material: PH13-8Mo Pin, Steel Collar

Stress Ratio, S_{min}/S_{max} : R = - 1.0

Thickness to Diameter Ratio: t/D = 1.7

	lax Stress cross Area, ksi	Cycles to Failure N.F. = No Failure	Mode of Failure(a)	Remarks
6DA49-1	16.3	115,130	6	
-4	29.7	10,410	4	
-3	16.3	217,530	4	
-2	29.7	13,520	6	

⁽a) See failure mode description.

TABLE A-35. 3/8 INCH SPLIT SLEEVE, 7075-T7351 LOW-LOAD TRANSFER SPECIMENS

Specimen Designation: MDF6DA2

Fastener System: ST5300-CBS-12 Sleeve, HL645 Pin, HL97 Collar

Interference Fit: 0.018 Inch Cold Work, 0.002 Inch Pin Interference

Fastener Material: A-286 Sleeve, PH13-8Mo Pin, A-286 Collar

Stress Ratio, S_{min}/S_{max} : R = + 0.25 Thickness to Diameter Ratio: t/D = 1.7

Specimen Identification	Max Stress Gross Area, ksi	Cycles to Failure N.F. = No Failure	Mode of Failure(a)	Remarks
MDF6DA2-1	35	42,250	5	
-2	20	502,860	4	
-3	17.5	551,020	9	Grip Failure
-4	30	79,540	4	
-5	12.5	10,401,850	D.N.F.	
-6	12.5	1,823,010	9	Grip Failure
-7	15	1,543,720	6	
-8	25	274,720	8	
-9	40	35,840	3 & 6	
-12	12.5	3,966,830	9	Grip Failure
-13	15	1,077,450	4	
-14	45	7,360	3 & 6	

⁽a) See failure mode description.

TABLE A-36. 3/8 INCH SPLIT SLEEVE, 7075-T7351 LOW-LOAD TRANSFER SPECIMENS, MINIMUM INTERFERENCE CONDITION

Specimen Designation: MDF6DA3

Fastener System: ST5300-CBS-12 Sleeve, HL645 Pin, HL97 Collar

Interference Fit: 0.015 Inch Cold Work, 0.002 Inch Pin Interference

Fastener Material: A-286 Sleeve, PH13-8Mo Pin, A-286 Collar

Stress Ratio, S_{min}/S_{max} : R = + 0.25 Thickness to Diameter Ratio: t/D = 1.7

Specimen Identification	Max Stress Gross Area, ksi	Cycles to Failure N.F. = No Failure	Mode of Failure(a)	Remarks
MDF6DA3-2	23.1	154,690	8	
- 7	23.1	361,020	8	
-8	48.5	3,440	3 & 6	
-10	23.1	297,440	5	
-11	48.5	4,200	3 & 6	
-4	48.5	4,660	6	

⁽a) See failure mode description.

TABLE A-37. 3/8 INCH SPLIT SLEEVE, 7075-T7351 LOW-LOAD TRANSFER SPECIMENS

MDF6DA4

Fastener System:

ST5300-CBS-12 Sleeve, HL645 Pin, HL97 Collar

Interference Fit:

0.018 Inch Cold Work, 0.002 Inch Pin Interference

Fastener Material:

A-286 Sleeve, PH13-8Mo Pin, A-286 Collar

Stress Ratio, S_{min}/S_{max}: Thickness to Diameter Ratio:

R = -0.25t/D = 1.7

Specimen Identification	Max Stress Gross Area, ksi	Cycles to Failure N.F. = No Failure	Mode of Failure(a)	Remarks
MDF6DA4-1	15	542,770	9	Grip Failure
-2	35	26,930	3 & 6	
-4	17.5	249,410	3 & 6	
-5	20	198,560	3	
-6	12.5	681,050	9	Grip Failure
-7	25	59,070	3 & 6	
-8	20	128,650	8	
-9	40	6,020	3 & 6	
-10	10	2,698,610	9	Grip Failure
-11	30	27,480	3 & 6	
-12	35	32,500	3 & 6	

⁽a) See failure mode description.

TABLE A-38. 3/8 INCH SPLIT SLEEVE, 7075-T73 LOW-LOAD TRANSFER JOINTS

MDF 6DA5

Fastener System: ST5300-CBS-12 Sleeve, HL645 Pin, HL97 Collar Interference Fit: 0.018 Inch Cold Work, 0.002 Inch Pin Interference Fastener Material: A-286 Sleeve, PH13-8Mo Pin, A-286 Collar Stress Ratio, Smin/Smax: R = + 0.25 or - 0.25

Thickness to Diameter Ratio: t/D = 0.5

Specimen Identification	Max Stress Gross Area, ksi	Cycles to Failure N.F. = No Failure	Mode of Failure(a)	Remarks
		R = + 0.25		
MDF6DA5-9	48.5	25,076	6	
-1	48.5	14,920	6	
-11	34.6	159,830	5	
-13	34.6	145,620	8	
-2	23.1	503,340	3	
-3	23.1	821,710	3	
		R = -0.25		
MDF6DA5-5	37.6	39,580	5	
-8	37.6	31,540	6	
-12	26.8	67,060	8	
-7	26.8	87,160	6	
-4	17.9	657,580	4	
-6	17.9	781,850	4	

⁽a) See failure mode description.

TABLE A-39. 3/16 INCH SPLIT SLEEVE, 7075-T73 LOW-LOAD TRANSFER SPECIMENS

Specimen Designation: MDF3DA6

Fastener System: ST5300-CBS-6 Sleeve, HL645 Pin, HL97 Collar

Interference Fit: 0.012 Inch Cold Work, 0.002 Inch Pin Interference

Fastener Material: A-286 Sleeve, PH13-8Mo Pin, A-286 Nut

Stress Ratio, S_{min}/S_{max} : R = + 0.25 Thickness to Diameter Ratio: t/D = 1.4

Specimen Identification	Max Stress Gross Area, ksi	Cycles to Failure N.F. = No Failure	Mode of Failure(a)	Remarks
MDF3DA6-5	23.1	1,796,750	2	
-4	23.1	675,900	9	Grip Failure
-7	23.1	675,050	9	Grip Failure
-6	48.5	10,350	3 & 6	
-8	48.5	10,870	6	
-1	48.5	13,330	3 & 6	

⁽a) See failure mode description.

TABLE A-40. 3/8 INCH SPLIT SLEEVE, 7075-T7351 LOW-LOAD TRANSFER SPECIMENS

Specimen Designation: MVF6DA22

Fastener System: ST5300-CBS-12 Sleeve, HL11 Pin, HL97 Collar

Interference Fit: 0.018 Inch Cold Work, 0.002 Inch Pin Interference

Fastener Material: A-286 Sleeve, 6AL-4V Pin, A-286 Collar

Stress Ratio, S_{min}/S_{max} : R = + 0.25 Thickness to Diameter Ratio: t/D = 1.7

Specimen Identification	Max Stress Gross Area, ksi	Cycles to Failure N.F. = No Failure	Mode of Failure(a)	Remarks
MVF 6DA22-1	40	20,910	3 & 6	
-2	50	3,560	3	
-3	25	491,550	3	
-4	35	53,260	3 & 6	
-5	20	396,730	9	Grip Failure
-6	30	139,110	6	
- 7	20	922,220	6	
-8	15	1,070,080	9	Grip Failure
-9	30	84,550	6	
-10	20	924,740	6	
-11	40	18,380	3 & 6	
-12	15	2,100,970	4	

⁽a) See failure mode description.

TABLE A-41. 3/8 INCH SPLIT SLEEVE, 7075-T7351 LOW-LOAD TRANSFER SPECIMENS

MVF6DA23

Fastener System:

ST5300-CBC-12 Sleeve, HL11 Pin, HL97 Collar

Interference Fit:

0.018 Inch Cold Work, 0.002 Inch Pin Interference

Fastener Material:

A-286 Sleeve, 6AL-4V Pin, A-286 Collar

Stress Ratio, Smin/Smax:

R = -0.25

Thickness to Diameter Ratio: t/D = 1.7

Specimen Identification	Max Stress Gross Area, ksi	Cycles to Failure N.F. = No Failure	Mode of Failure(a)	Remarks
MVF6DA23-4	30	34,210	5	
-1	40	19,530	3 & 6	
- 9	50	780	3 & 6	
-2	20	208,680	5	
- 5	35	30,190	5	
-3	25	112,990	8	
-6	15	499,780	4	,

⁽a) See failure mode description.

TABLE A-42. 3/8 INCH SPLIT SLEEVE, 7075-T7351 LOW-LOAD TRANSFER SPECIMENS

MVF6DA25

Fastener System:

ST5300-CBC-12 Sleeve, HL11 Pin, HL97 Collar

Interference Fit:

0.018 Inch Cold Work, 0.002 Inch Pin Interference

Fastener Material:

A-286 Sleeve, 6AL-4V Pin, A-286 Collar

Stress Ratio, Smin/Smax:

R = + 0.25 or - 0.25

Thickness to Diameter Ratio:

t/D = 0.5

Specimen Identification	Max Stress Gross Area, ksi	Cycles to Failure N.F. = No Failure	Mode of Failure(a)	Remarks
		R = + 0.25		
MVF 6DA25-1	23.1	1,357,000	4	
-3	23.1	156,190	3	
-12	34.6	115,880	6	
-6	34.6	97,280	1	
- 7	48.5	2,750	1	
-4	48.5	14,290	6	
		B - 0 25		
MVF6DA25-11	17.9	$\frac{R = -0.25}{328,130}$	6	
-8	17.9	495,920	6	
-9	26.8	136,250	1 & 2	
-2	26.8	110,190	4	
-5	37.6	39,020	5	
-10	37.6	45,990	5	

⁽a) See failure mode description.

TABLE A-43. 3/8 INCH SPLIT SLEEVE, 6AL-4V M.A. LOW-LOAD TRANSFER SPECIMENS

MDF6DT31

Fastener System:

ST5300-CBC-12 Sleeve, HL645 Pin, HL97 Collar

Interference Fit: 0.018 Inch Cold Work, 0.012 Inch Pin Interference

Fastener Material: A-286 Sleeve, PH13-8Mo Pin, A-286 Collar

Stress Ratio, Smin/Smax:

R = + 0.25

t/D = 1.7Thickness to Diameter Ratio:

Specimen Identification	Max Stress Gross Area, ksi	Cycles to Failure N.F. = No Failure	Mode of Failure(a)	Remarks
MDF6DT31-10	45	3,776,530	3	
-7	50	500,750	6	
-6	60	101,830	6	
-5	80	20,920	6	
-3	55	259,210	6	
-4	80	23,000	6	
-2	60	94,120	4	
-1	70	40,780	6	

⁽a) See failure mode description.

TABLE A-44. 3/8 INCH SPLIT SLEEVE, 6AL-4V M.A. LOW-LOAD TRANSFER SPECIMENS

MVF6DT35

Fastener System:

ST5300-CBC-12 Sleeve, HL11 Pin, HL97 Collar

Interference Fit:

0.018 Inch Cold Work, 0.002 Inch Pin Interference

Fastener Material:

A-286 Sleeve, 6AL-4V Pin, A-286 Collar

Stress Ratio, Smin/Smax:

R = + 0.25

Thickness to Diameter Ratio:

t/D = 0.6

Specimen Identification	Max Stress Gross Area, ksi	Cycles to Failure N.F. = No Failure	Mode of Failure(a)	Remarks
MVF6DT35-1	80	22,880	3 & 7	
-3	80	30,300	6	
-4	65	40,420	6	
-5	65	54,290	6	
-6	55	183,580	3	
-2	55	122,520	2	

⁽a) See failure mode description.

TABLE A-45. 3/8 INCH SPLIT SLEEVE, 7075-T7351 LOW-LOAD TRANSFER SPECIMENS

MDP 6DA43

Fastener System:

ST5300-CBC-12 Sleeve, HL644 Protruding Head Pin, HL97 Collar
0.018 Cold Work, 0.002 Inch Pin Interference A-286 Sleeve, PH13-8Mo Pin, A-286 Collar

Interference Fit:

Fastener Material:

Stress Ratio, Smin/Smax: Thickness to Diameter Ratio:

R = + 0.25 or - 0.25t/D = 1.7

Specimen Identification	Max Stress Gross Area, ksi	Cycles to Failure N.F. = No Failure	Mode of Failure(a)	Remarks
		R = + 0.25		
MDP6DA43-5	23.1	277,130	9	
-3	23.1	845,470	9	Grip Failure
-7	34.6	97,970	4	
-2	48.5	11,320	6	
-10	48.5	9,080	6	
		R = -0.25		
MDP 6DA43-8	17.9	306,470	6 & 8	
-6	17.9	310,900	6 & 8	
-4	26.8	119,660	6	
-9	37.6	26,110	6	
-1	37.6	16,820	4	

⁽a) See failure mode description.

TABLE A-46. 3/8 INCH SPLIT SLEEVE, 7075-T7351 LOW-LOAD TRANSFER SPECIMENS

MDP6DA45

Fastener System:

ST5300-CBC-12 Sleeve, HL644 Pin, HL97 Collar

Interference Fit:

0.018 Inch Cold Work, 0.002 Inch Pin Interference

Fastener Material:

A-286 Sleeve, PH13-8Mo Pin, A-286 Collar

Stress Ratio, Smin/Smax:

R = + 0.25 or - 0.25

Thickness to Diameter Ratio:

t/D = 0.5

Specimen Identification	Max Stress Gross Area, ksi	Cycles to Failure N.F. = No Failure	Mode of Failure(a)	Remarks
		R = + 0.25		
MDP6DA45-1	23.1	445,730	3	
-2	23.1	3,197,050	3	
-7	34.6	88,770	8	
-3	34.6	168,530	6	
- 5	48.5	5,240	4	
-4	48.5	20,380	6	
		R = -0.25		
MDP6DA45-8	17.9	1,349,260	5	
-6	17.9	715,050	9	Grip Failure
-10	26.8	141,880	3	
-11	26.8	129,060	3	
-9	37.6	39,780	8	
-12	37.6	47,880	1	

⁽a) See failure mode description.

TABLE A-47. 3/8 INCH SPLIT SLEEVE, 7075-T7351 LOW-LOAD TRANSFER SPECIMENS

MDF6DA48

Fastener System:

ST5300-CBC-12 Sleeve, HL645 Pin, HL97 Collar

Interference Fit:

0.018 Inch Cold Work, 0.002 Inch Pin Interference

Fastener Material:

A-286 Sleeve, PH13-8Mo Pin, A-286 Collar

Stress Ratio, Smin/Smax:

R = + .1t/D = 1.7

Thickness to Diameter Ratio:

Specimen Identification	Max Stress Gross Area, ksi	Cycles to Failure N.F. = No Failure		Remarks
MDF6DA48-2	48.5	7,330	6	
-4	48.5	5,180	3 & 6	
-3	23.1	162,020	5	
-1	23.1	389,020	6 & 8	

⁽a) See failure mode description.

TABLE A-48. 3/8 INCH SPLIT SLEEVE, 7075-T7351 LOW-LOAD TRANSFER SPECIMENS

MDF6DA49

Fastener System:

ST5300-CBC-12 Sleeve, HL645 Pin, HL97 Collar 0.018 Inch Cold Work, 0.002 Inch Pin Interference

Interference Fit: 0.018 Inch Cold Work, 0.002 Inch Pin Interference Fit: A-286 Sleeve, PH13-8Mo Pin, A-286 Collar

Stress Ratio, S_{min}/S_{max} : R = - 1.0

Thickness to Diameter Ratio: t/D = 1.7

Specimen Identification	Max Stress Gross Area, ksi	Cycles to Failure N.F. = No Failure	Mode of Failure(a)	Remarks
MDF6DA49-2	16.3	265,520	2 & 8	
-1	16.3	140,420	6 & 8	
-3	29.7	25,450	8	
-4	29.7	28,920	5	

⁽a) See failure mode description.

TABLE A-49. 3/8 INCH SPLIT SLEEVE, 6AL-4V M.A. LOW-LOAD TRANSFER SPECIMENS

Specimen Designation: MDF6DT52

Fastener System: ST5300-CBC-12 Sleeve, HL645 Pin, HL97 Collar Interference Fit: 0.018 Inch Cold Work, 0.002 Inch Pin Interference Fastener Material: A-286 Sleeve, PH13-8Mo Pin, A-286 Collar

Stress Ratio, S_{min}/S_{max} : R = + 0.1 Thickness to Diameter Ratio: t/D = 1.7

Specimen Identification	Max Stress Gross Area, ksi	Cycles to Failure N.F. = No Failure	Mode of Failure(a)	Remarks
MDF6DT52-3 -2 -4	55 55	92,940 129,800	7 4 & 7	
-4	80	22,020	3 & 6	

⁽a) See failure mode description.

APPENDIX B

FATIGUE LIFE CURVES FOR PRIMARY VARIABLES

FIGURE B-2. FASTENER FATIGUE IMPROVEMENT DATA

FIGURE B.3. FASTENER FATIGUE IMPROVEMENT DATA

FIGURE B-4, FASTENER FATIGUE IMPROVEMENT DATA

FIGURE B.5. FASTENER FATIGUE IMPROVEMENT DATA

FIGURE B-6. FASTENER FATIGUE IMPROVEMENT DATA

FIGURE B-7. FASTENER FATIGUE IMPROVEMENT DATA

FIGURE B-8. FASTENER FATIGUE IMPROVEMENT DATA

FIGURE B-9. FASTENER FATIGUE IMPROVEMENT DATA

FIGURE B-10, FASTENER FATIGUE IMPROVEMENT DATA

FIGURE B-11, FASTENER FATIGUE IMPROVEMENT DATA

FIGURE B-12, FASTENER FATIGUE IMPROVEMENT DATA

FIGURE B-14. FASTENER FATIGUE IMPROVEMENT DATA

FIGURE B-15. FASTENER FATIGUE IMPROVEMENT DATA

FIGURE B-17. FASTENER FATIGUE IMPROVEMENT DATA

FIGURE B-18, FASTENER FATIGUE IMPROVEMENT DATA

FIGURE B-21, FASTENER FATIGUE IMPROVEMENT DATA

FIGURE B-23, FASTENER FATIGUE IMPROVEMENT DATA

FIGURE B-24. FASTENER FATIGUE IMPROVEMENT DATA

FIGURE B-25. FASTENER FATIGUE IMPROVEMENT DATA

FIGURE B-26, FASTENER FATIGUE IMPROVEMENT DATA

FIGURE B-27, FASTENER FATIGUE IMPROVEMENT DATA

FIGURE B-30, FASTENER FATIGUE IMPROVEMENT DATA

FIGURE B-31, FASTENER FATIGUE IMPROVEMENT DATA

FIGURE B-33, FASTENER FATIGUE IMPROVEMENT DATA

FIGURE B-34, FASTENER FATIGUE IMPROVEMENT DATA

FIGURE B-35. FASTENER FATIGUE IMPROVEMENT DATA

FIGURE B-36, FASTENER FATIGUE IMPROVEMENT DATA

APPENDIX C

FATIGUE LIFE CURVES FOR SECONDARY VARIABLES

Mean life and 90 percent population limits for Figures C-1 through C-18 are defined by Figure B-27 where:

$$Log(N_f) = 10.9039 - 0.0056S - 4.01749 Log(S).$$

Mean life and 90 percent population limits for Figures C-19 through C-22 are defined by Figure B-34 where:

$$Log(N_f) = 22.373 - 0.0144S - 9.2719 Log(S).$$

Mean life and 90 percent population limits for Figure C-23 is defined by Figure B-36 where:

$$Log(N_f) = 48.3858 + 0.1842S - 30.8550 Log(S).$$

FIGURE C-1. FASTENER FATIGUE IMPROVEMENT DATA

FIGURE C-2, FASTENER FATIGUE IMPROVEMENT DATA

FIGURE C-3, FASTENER FATIGUE IMPROVEMENT DATA

FIGURE C_4, FASTENER FATIGUE IMPROVEMENT DATA

FIGURE C-5. FASTENER FATIGUE IMPROVEMENT DATA

FIGURE C-6. FASTENER FATIGUE IMPROVEMENT DATA

FIGURE C.7. FASTENER FATIGUE IMPROVEMENT DATA

FIGURE C-8, FASTENER FATIGUE IMPROVEMENT DATA

FIGURE C.9, FASTENER FATIGUE IMPROVEMENT DATA

FIGURE C-10, FASTENER FATIGUE IMPROVEMENT DATA

FIGURE C-11, FASTENER FATIGUE IMPROVEMENT DATA

FIGURE C.. 12. FASTENER FATIGUE IMPROVEMENT DATA

FIGURE C-13, FASTENER FATIGUE IMPROVEMENT DATA

FIGURE C-14, FASTENER FATIGUE IMPROVEMENT DATA

FIGURE C-15, FASTENER FATIGUE IMPROVEMENT DATA

FIGURE C-16, FASTENER FATIGUE IMPROVEMENT DATA

FIGURE C-17. FASTENER FATIGUE IMPROVEMENT DATA

FIGURE C-18, FASTENER FATIGUE IMPROVEMENT DATA

FIGURE C-19, FASTENER FATIGUE IMPROVEMENT DATA

FIGURE C-22, FASTENER FATIGUE IMPROVEMENT DATA

FIGURE C-23, FASTENER FATIGUE IMPROVEMENT DATA

APPENDIX D

STATIC-JOINT STRENGTH RESULTS

Specimen Identification	Thickness, inches	Width, inches	Yield Load, 1b(a)	Ultimate Load, 1b	Yield Stress (Gross Area), psi	Ultimate Stress (Gross Area), psi	Failure Mode(b)
TDF6DA1-2	1.274	.25	149,000	165,000	51,980	5	A
TDF6DA1-1	1.278	2.251	161,000	178,500	9		A
MDF6DA1-2	1.271	2	151,000	5,	2,8	,	A
MDF6DA1-1	1.264	.2	145,000	•	0,93		A
SDF6DA1-1	1.270	.2	153,000	166,500	3	2	A
SDF6DA4-9	1.301	.2	162,000	176,000	2	0	A
TVF6DA21-2	1.292	.2	160,000	177,300	5,	9	A
TVF6DA21-1	1.298		155,000	176,300	3	e,	O
MVF6DA21-2	1.280	.2	162,000	178,000	6,		C
MVF6DA21-1	1.247	.2	151,000	170,200	3,	60,634	A
SVF6DA21-2	1.262	.2	147,000	163,400	1,	57,494	В
SVF6DA21-1	1.273	2	188,500	175,800	5,2	61,268	A
TDP6DA42-2	1.298	2.251	166,000	180,700	6,8	61,845	A
TDP6DA42-1	1.272		150,500	166,700	2,5	58,220	A
MDP6DA42-2	1.281		162,000	80	6,1	62,700	A
MVP6DA42-1	1.277	.2	163,000	0	6,	62,647	O
SDP6DA42-2	1.270	.2	163,000	4,	7,	61,055	В
SDP6DA42-1	1,267	.2	157,500	172,100	5	60,450	В
TDF6DA5-13	.384	2.262	∞	2,	5	60,211	O
TDF6DA5-14	.389	.2	•	•	5,	59,933	A
SDF6DA5-9	.385	.2	48,600	2,7	5,	60,568	A
SDF6DA5-3	.387	.2	8	2,	7,90	59,881	В
MDF6DA5-14	.389	.2	6	3,7	9,4	60,921	A
MDF6DA5-10	.386	.2	∞	2	5,35	60,460	A
TVF6DA24-1	.386	.2	∞	7	5,8	59,794	O
TVF6DA24-2	.386	.2	7,	Г	4,66	6	В
SDF6DA24-1A	.383	.2	1	\vdash	5	•	A
SDF6DA24-2A	.383	.2	47,800	52,200	5,24	60,333	A
MVF6DA24-1	.384	.26	47,800	52,300	5,0	0,26	В
MVF6DA24-2	788		77 000	51 900	15	59 80%	Δ

STATIC JOINT STRENGTH OF LOW-LOAD TRANSFER SPECIMENS

TABLE D-1.

TABLE D-1. (Continued)

Specimen Identification	Thickness, inches	Width, inches	Yield Load, 1b(a)	Ultimate Load, 1b	Yield Stress (Gross Area), psi	Ultimate Stress (Gross Area), psi	Failure Mode(b)
TDP6DA44-1A	.384	2.263	48,600	52,450	55,927	60,357	A
TDP6DA44-2A	.391	2.261	50,600	54,250	57,237	61,365	A
SDP6DA44-1A	.383	2.256	48,400	52,550	56,015	60,818	A
SDP6DA44-2A	.383	2.252	48,000	52,300	56,681	60,637	В
MDP6DA44-1	.38	2.252	48,000	52,700	55,797	61,260	A
MDP6DA44-2	.380	2.251	47,700	51,600	55,765	60,324	В
TVF6DT30-1	1.307	2.260	;	357,000	1	120,860	A

Yield criteria: 0.2% of gage length (.002 x 4.0 = .008 inch). Failure Mode: A = bottom sheet through No. 1 hole, top sheet through No. 2 hole; B = both sheets through No. 2 hole. (a)

STATIC JOINT STRENGTH OF HIGH-LOAD TRANSFER SPECIMENS TABLE D-2.

Specimen Identification	Thickness, inches	Width, inches	Yield Load, 1b(a)	Ultimate Load, 1b	(Gross Area),	Offinate Stress (Gross Area), psi	Failure Mode(b)
TDF6MA8-1	1.222	3.005		61,400	5,3	•	A
TDF6MA8-2	1.217	3.005		61,400		33,579	A
SDF6MA8-1	1.215	3.006	3	61,000	3,7	•	A
SDF6MA8-2		0	45,800	61,700	4,9	•	A
MDF 6MA8-1	.22	3.008	38,600	62,900	0,9	•	A
MDF6MA8-2	•	0	35,200	61,000	0,6	•	A
TVF6MA26-1	1.219	3.005	46,000	54,000	5,1	•	A
TVF6MA26-2	1.224	3.003	47,700	55,200	5,9	•	A
SVF6MA26-1	1.226	0	39,800	54,800	1,6	•	A
SVF6MA26-2	1.223	3.003	43,000	55,850	3,4		A
MVF6MA26-1	1.230		44,200	55,700	3,8	•	A
MVF6MA26-2	_	3.008	0	54,950	2,0		A
TDP6MA46-1	1.226		46,300	68,600	5,1	•	A
TDP6MA46-2	-		9	69,500	5,6	•	A
SDP6MA46-1	•		5,	67,700	4,6	•	A
SDP6MA46-2	-	3.014	8	67,000	6,5	•	A
MDP6MA46-1	1.227		49,000	68,250	6,5	•	В
MDP6MA46-2	1.230	3.006	46,000	68,800	24,882	•	В
TDF6MA13-1	.385	3.004	26,800	30,150	6,3	•	O
TDF6MA13-2	.382		26,200	30,500	5,6		O
SDF6MA13-1	.381		26,100	30,700	5,7	•	O
SDF6MA13-2	.381		6,	α	6,9	•	O
MDF6MA13-1	.382		24,600	30,800	2,8	•	O
MDF6MA13-2	.383		26,200	0	5,4	53,643	O
TVF6MA28-1	.382	00.	5,	10	5,1	•	Ω
TVF6MA28-2	.382	3.002	26,700		5,	5,	O
SVF6MA28-1	.379	00.	26,000	29,950	5,6	,56	O
SVF6MA28-2	1	00.	6,4	3	3,8	,33	O
MVF6MA28-1	.382	.00	1	30,300	٣,	,75	D
MUFEMADS-2	381	3,008	7	30,400	7.6	0.5	Q

Failure Mode(b)	Ľ	O	O	O	ы	ы	В	В	В	В
Ultimate Stress (Gross Area), psi	90,047	92,713	99,750	100,612	95,902	94,715	35,602	35,819	31,915	32,067
Yield Stress (Gross Area),	79,115	80,620	91,887	90,141	88,363	89,636	33,544	33,950	30.988	30,360
Ultimate Load, 1b						63,400				
Yield Load, lb(a)	55,000	26,000	29,600	59,400	58,600	000,09	65,200	65,400	60,200	58,700
Width, inches	3.003	3.007	2.955	2.955	2.954	2.975	2.972	2.982	2.975	2.970
Thickness, inches	.463	.462	.439	977.	677.	.450	1.308	1.292	1.306	1.302
Specimen Identification	TDF6MT38-1	TDF6MT38-2	SDF6MT38-1	SDF6MT38-2	MDF6MT38-1	MDF6MT38-2	TDF6MT36-1	TDF6MT36-2	SDF6MT36-1	SDF6MT36-2

Yield criteria: 0.04D offset. (a) (b)

Failure Mode: A = Fastener head failure, B = Fastener shank shear-tensile failure, C = Sheet failure threadside, D = Fastener threadside, D = Fastener threadside, D = Fastener

STATIC JOINT STRENGTH OF ALUMINUM MEDIUM-LOAD TRANSFER SPECIMENS TABLE D-3.

Specimen Identification	Thickness, inches	Width, inches	Yield Load, 1b	Ultimate Load, 1b	Yield Stress (Gross Area), psi	Ultimate Stress (Gross Area), psi	Failure Mode(a)
TDF6LA15-1	.612	1.506	(b)	52,200	75,415	56,636	ST
TDF6LA15-2	.613	1.506	(p)	52,100	75,147	56,435	ST
SDF6LA15-1	.610	1.505	(b)	51,700	75,004	56,315	ST
SDF6LA15-2	.614	1.504	(b)	54,700	78,909	59,234	ST
MDF6LA15-1	.612	1.501	(b)	53,900	78,217	58,675	ST
MDF6LA15-2	.613	1.507	(b)	51,750	74,577	56,019	ST

 $\mathrm{ST}=\mathrm{sheet}$ tensile. Yield loads were not determined due to specimen slippage in grips causing erratic readings. (a) (b)

TABLE D-4. STATIC JOINT STRENGTH OF ALUMINUM 3/16-INCH DIAMETER FASTENED SPECIMENS

Specimen Identification	Thickness, inches	Width, inches	Yield Load, 1b	Ultimate Load, 1b	Yield Stress (Gross Area), psi	Ultimate Stress (Gross Area), psi	Failure Mode
TDF3MA11-5	.256	1.503	11,100(b)	14,800	28,217	37,623	A
TDF3MA11-6	.256	1.497	1	14,725	:	38,423	A
SDF3MA11-1	.258	1.503	!	14,300	:	36,806	Ą
SDF3MA11-2	.257	1.504	}	14,250	1	36,795	A
MDF3MA11-1	.258	1.503	:	14,000	;	36,104	A
MDF3MA11-2	.258	1.500	8,700(b)	14,125	22,481	36,499	A
TDF3DA6-4	.519	1.120	31,080(c)	35,150	53,468	60,470	В
TDF3DA6-6	.519	1.123	29,400(c)	35,100	50,443	60,223	В
SDF3DA6-3	.518	1.123	29,700(5)	35,650	51,056	61,284	В
SDF3DA6-5	.519	1.124	31,500(c)	35,700	53,998	61,198	В
MDF3DA6-2	.520	1.124	30,600(c)	35,900	52,354	61,422	В
MDF3DA6-3	.521	1.118	-	35,850	1	61,547	В

Failure Mode: A = fastener head failure, B = bottom sheet through No. 1 hole, top sheet through No. 2 hole. (a)

Yield load determined at 0.04D offset. Yield load determined at offset = 0.2 percent of 2-inch-gage length. (c)

APPENDIX E

SHEET MATERIAL PROPERTIES

TABLE E-1. SHEET MATERIAL FATIGUE PROPERTIES, NO-HOLE SPECIMENS, 7075-T73, T7351 ALUMINUM (R = 0)

Specimen Identification	Max. Stress Gross Area, ksi	Cycles to Failure	Remarks
	t = 0.	250 Inch	
NOSA54-1	40.0	137,000	
-3	50.0	26,800	
-4	45.0	69,900	
- 5	30.0	5,344,700	
-6	35.0	230,300	Grip failure
-7	35.0	268,300	11 11
	t = 0.	190 Inch	
NOSA55-6	40.0	82,100	
- 5	37.5	102,300	
-3	35.0	208,000	
-8	32.5	339,600	
-1	32.5	152,000	
-9	27.5	5,000,000	Did not fail
	t = 0.	675 Inch	
NOSA56-3	37.5	73,180	
-7	35.0	100,300	
-4	35.0	56,950	Grip failure
-2	32.5	104,290	
- 5	30.0	114,710	
-6	30.0	117,240	
-1	27.5	3,828,030	Grip failure
-8	25.0	5,464,750	

TABLE E-2. SHEET MATERIAL FATIGUE PROPERTIES, OPEN-HOLE SPECIMENS, 7075-T73, T7351 ALUMINUM (R = 0)

Specimen Identification	Max. Stress Gross Area, ksi	Cycles to Failure	Remarks
	t = ().250 Inch	
N3SA54-11	33.33	12,300	
-12	29.16	22,300	
-3	25.00	37,000	
-9	25.00	69,200	
-1	20.82	56,000	
- 7	20.82	185,700	
-6	16.67	116,500	
	t = 0	0.190 Inch	
N6SA55-1	33.33	10,400	
-2	25.00	27,000	
- 3	16.67	87,700	
-4	33.33	10,500	
- 5	20.83	68,800	
-6	15.83	516,100	
- 7	16.67	5,188,700	Did not fail
-8	25.00	24,700	
-9	20.83	39,200	
-10	18.75	56,400	
-11	16.67	72,500	
	t = 0	0.625 Inch	
N6SA56-1	25.00	26,320	
-5	16.64	2,270,890	
- 9	16.67	1,302,900	
- 7	16.83	5,579,110	Did not fail
-8	14.58	1,319,650	
-11	16.66	149,470	
-3	18.74	97,350	
-4	20.80	74,370	
-2	24.80	34,320	

TABLE E-3. SHEET MATERIAL FATIGUE PROPERTIES, OPEN-HOLE SPECIMENS, 6AL-4V, MILL ANNEALED (R = 0)

Specimen Identification	Max. Stress Gross Area, ksi	Cycles to Failure	Remarks
	t = (0.250 Inch	
N6ST57-8	25.00	294,880	
-3	20.84	1,181,220	
-1	33.34	93,110	
- 5	29.18	280,000	
-7	20.84	5,497,070	Did not fail
-2	25.00	310,300	
-6	37.50	47,740	
-10	22.92	5,392,110	Did not fail
-9	29.18	141,880	
	t = 0	0.625 Inch	
N6ST58-1	58.33	22,530	
-2	41.68	78,400	
-9	33.32	134,250	
-10	33.35	467,270	
-6	29.17	292,860	
-4	29.16	306,170	
-8	25.01	340,710	
-3	24.99	517,600	
- 7	17.62	6,481,810	Did not fail
-12	20.84	5,596,030	Did not fail

MATERIAL CERTIFICATIONS

PRCPERTIE MM 61-3 D Type of Test Spec. Dwg Strain Rate to 19 Strain Rate After Load Rate to Fra Test Environment Soak Time Remarks	130 130 150	52_	Aluminum Direction & Aluminum Direction & Aluminum Direction & Aluminum Machine Scale // Scale // Min. Extensom Strain Scale // Min. Strain Scale // Min. Gears: Or Pacing G	polica a n lle	Range No	e gre for	Alloy & Temper Product Formot No Other Info W.O. No No. of Spec Originator T. R. No 7.	99 6 ARKER	Project No	<u>,0 34</u> 0	73
	Test	Grain	Original	Original	Ultimate	Ultimate	Yield	Yield	Elong	ation	Red. of
Specimen No.	Temp.	Direc-	Dimensions Inches	Area Sq. In.	Strength Lbs.	Strength	Strength Lbs.	Strength	in	Inches	Area %
0	-				6770	72000		4.1900			
	172	1 KHNS	49564.1855	.09539	6750	172900	5820	6.7 100	1,20	11.0	
T2 T3	+		497(X, 1855	1.09379	6170	72200	5410	62500	.24	10.5	
-	++	1	5065N.1901	.69552	6.756	13 100		6.4000		100	-
	11.			.09.190	6700	12 700	6110	13300		10.0	-
<u> 15</u>	1/	1	SOUN 1894 SOUSK. 1901	,69514	6450	73100	6010	6.3ecc	1.20	100	
TL	+	· ·	3005 8.1701	,67374	2436	7.5	1170	(.)	1.20	10.0	
						72 700		63/00		10.1	
					הוש	67.0		56.0	-	8	
***************************************						Con	1. 1.1.	320	1	1	
-			5 1973				1				
			IFG. TECHNOLOGY.								
-	-			-				-	-	-	
-	-					-	-	-	-	-	
-	1										
		λ									
****					-			-	-	-	
	-	-					-	-	+	-	
***************************************		1		1						1	
ORIGINATOR -	PINE	Tested	141	Test ,	1/5/12	Checked	1,1,1		Date	1 /2	

			TES1	REPORT			PAGE	OF
^			DATE		MILL UHDER NO	GRADE	PACE	KING LIST NO
			June 12	1973	17430X	6A1-4V		76874
RMI			CUSTOMER N	AME	277307		CUSTOMER O	RDER NO.
TITAL	MIII	Mr.	Rattolla	Momortal	Institute			
	4101	**	MATERIAL	- Hemol Idi	Institute			
RMI C	om	pany - NILES, OHIO	H.R. Ant	nealed & C	leaned T1 Sh	eet		
		•	Mil-T-90	146F Type	3 Comp C Con	d. A (.15	max, 02)	
IDENTIFICATION &	REFER	INGOT NO. LOT 5-		LOT S-F		LOT S.R		LOT S-R
MATERIAL NUME	BER	600134 03 00						
TRAVEL CARD N	10	53375						
CHEMISTRY Y	INGOT	TAVERAGE OF TOP-CENTER-	BOTTOM	FINAL PRODU	JCT			
C	0.0	.02	i					
N		.012						
Fe		.17			1			
Al	-	6.3			1			
V					1			
Cr		3.9	-		-			
Sn					-			
					-			
Mn								
Мо		100						
0		,136						
FINAL					-			
PRODUCT H	(PPM)	68						
PROPERTIES								
	L	144.5/146.6						
ULTIMATE KSI	т	144.3/145.9						
YIELD KSI	L	138,2/140,5						
(0.2%) OFF	SETIT	137.0/139.9						
% ELONGATION	-	10.0/12.0						
(INCHES)	Т	11.0/12.0						
% REDUCTION	L							
IN AREA	т							
BEND 1050	L	5.0 TR						
	T	5.0 TR						
HARDNESS								
STATIC NOTCH								
IMPACT								
ULTRASONIC								
BETA TRANSUS								
TEST FORGE		Prod Ann 1450°F	15 min. A.	C.				
PROCEDURE								
OTHER DATA								
SHIPPED								
NO. OF PIECES		2	1		T			
WEIGHT		2						
SIZE		94.0#						
TEST PIECES		.125 x 30 x 71	-		+			
IEST PIECES			+		-			
			1		1			

FORM NO. 44 REV. 5/71

THIS IS TO CERTIFY THAT THE ABOVE TEST RESULTS AND CORRECT AS CONTAINED IN THE RECORDS OF THE COMPANY.

SIGNED AND ALL A SUME OF THE

			TEST	REPORT				PACE 1	0.5	1
^			DATE	MIL	L OHUEH NO	GRADE		PAGE 1	i LIS	T NO
			August 1	3, 1973	17433	6A1	-4V	78	444	
RMI			CUSTOMER NA	ME			CUST	TOMER ORDE	ER NO	0.
TITANI	UM		Battelle	Memorial	Inst.		G	7650		
	• • • • • • • • • • • • • • • • • • • •	2,2	MATERIAL							
		·1328	H.R. Ann	& Cld Ti	Plate					
RMI Cor	npany - N	III ES OUIO	SPECIFICATION							
	1	VICES, ONIO	Mil-T-904	6F Type 3	Comp C Cor	nd A				
IDENTIFICATION & REFE	INGOT NO	LOT S.R	INGOT NO	ILOT S-RI	ULGOT NO	LOT S.	R ING	OT NO	LOT	S-R
MATERIAL NUMBER	890777	03 00						1		1
TRAVEL CARD NO	32818	103 100					-			-
CHEMISTRY X IN	THE RESERVE OF THE PERSON NAMED IN COLUMN 2 IS NOT THE OWNER.	TOP-CENTER-BO	OTTOM: F	INAL PRODUCT						
c %	The state of the s			1			1		-	
N	.017									
•							-		-	
Al	.18						+			
v	6.5						-			
Cr Cr	3.9						-		-	
							+			
Sn							-			
Mn							-			
Мо										
0	.130									
PINAL										
PRODUCT H (PPA	78									
PROPERTIES	1		2		3					
	L 145.6		139.8		142.1					
ULTIMATE KSI	T 157.5		152.8		158.2					
YIELD KSI	L 132.1		127.7		132.1					
(0.2%) OFFSET	T 150.9		130.2		151.5					
% ELONGATION	10.0		11.0		10.0					
(INCHES)	T 11.0		13.0		11.0					
% REDUCTION	L									
IN AREA	т									
BEND 1050	L									
	т									
HARDNESS										
STATIC NOTCH							1			
IMPACT										
ULTRASONIC							1			
BETA TRANSUS										
TEST FORGE										
PROCEDURE							1			
71100200112	Prod Ann	021 1/50°E	15 min. A.	C			-			
	FIOU AIII	1 0041 189	13 min A.				-			
OTHER DATA						-				
DILIER DAIA	T		1	1			1			
							+			
	-						-			
	-						-			
				1						
SHIPPED			1							
NO. OF PIECES	3						-			
WEIGHT	379.4						-			
SIZE	.190 x 3	6 x 96					-			
TEST PIECES							-			
FORM NO. 44 REV. 5/7	1			TH	S IS TO CERTIF	Y THAT THE	ABOVE TE	ST RESULTS	APE	COR

RECT AS CONTAINED IN THE RECORDS OF THE COMPANY

SIGNED A OMALA HOUGECHUS

		TEST REPOR	RT		PAGE 1 OF 1
^		DATE	MILL ORDER NO	GHADE	The second secon
DAIL		August 13, 197	3 17431	6A1-4V	
[RMI]				1	CUSTOMER OHDER NO.
TITANIU	M	Battelle Memor	ial Inst.		G 7650
		MATERIAL			
DAM C		H.R. Ann & Cld	Ti Plate		
KMI Com	pany - NILES. OHIO				
		THE RESERVE OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN TW	pe 3 Comp C Con		
IDENTIFICATION & RIFER	INGOT NO. LOT S-R	INGOT NO. LOT	S-R INGOT NO	LOT S-R	INGOT NO LOT S-R
MATERIAL NUMBER	890777 04 00			' '	
TRAVEL CARD NO	32811	TTOM! FINAL P	PODUCT		
c %		TIOM? FINAL FI	1	· · · · · · · · · · · · · · · · · · ·	
N /8	01				
Fe Pe	.017				
Al	6.5				
v	3.9				
Cr	3.9				
sn					
Mn					
Mo					
0	.130				
10	130				
FINAL H	1 116 2 105				
PRODUCT	110 2 103				
PROPERTIES	1	2			
L	144-1	144.3			
ULTIMATE KSI T	154.3	154.4			
YIELD KSI L	134.2	133.6			
(0.2%) OFFSET T	147.5	146.7			
% ELONGATION L	11.0	10.0			
(INCHES) T	12.0	12.0			
% REDUCTION L					
IN AREA T					
BEND 1050					
Т					
HARDNESS					
STATIC NOTCH					
IMPACT					
ULTRASONIC					
BETA TRANSUS					
TEST FORGE					
PROCEDURE	Dec 1 A 1 1/50°D	15 -d- A C			
	Prod Anneal 1450°F	15 min. A.C.			
071150 0474				!	
OTHER DATA	1				
ENIBBED					
SHIPPED				1	
NO. OF PIECES	2 226 24				
BIZE	236.2#				
TEST PIECES	.250 x 36 x 72				
1291 FIEUES					
			THIS IS TO CERTIFY	THAT THE ARC	OVE TEST RESULTS ARE COR-
FORM NO. 44 REV. 5/71			THIS IS TO CERTIF		TEST RESULTS ARE COR

RECT AS CONTEMPO IN THE RECORDS OF THE COMPANY.

BIGNED NORALL TOWASCHIE

					TEST REPO				PAGE	1 0= 1
^					DATE		L ORDER NO	GHADE	PAL	KING LIST A
PM	TAN				August 8, 19	773	17434	6A1-4V		78527
IX IV	=								CUSTOMER C	RDER NO.
	IAN	IUI	М		Battelle Men	orial	Institute		G 7650	
					MATERIAL					
DAA	1 00				H.R. Anneale	d & C1	eaned Ti	Plate		
KIVI	Co	m	pany - N	ILES, OHIO						
_	_				M11-T-9046F			ond A		
IDENTIFICAT		-	INGOT NO	LOT S.R	INGCT NO. LOT	S-R	INCOT NO	LOT S-R	INGOT NO	LOT S.
MATERIAL		1	890777	1 06 00						
TRAVEL CA			32317					1		
CHEMISTR	_		AVERAGE CF	TOP-CENTER-RO	TTOM : FINAL I	PRODUCT				
		6	.01							
	N	_	.01							
	Pe Al	-	.18							
	V	-	6.5							
		_	3.9							
	Cr Sn	-								
	**********	_								
	Mo									
	0		.130	0		-				
	0	-	.13	0						
FINAL	H (PF	_	60	0		-				
PRODUCT	П	M 1	- 01	0						
ROPERTI	FS		1		2		2			
NOI ENTI		141	141.1		141.5		3		4	
ULTIMATE	KSI	T	146.1		146.5		147.4		1/6 7	
YIELD KSI		14	128.2		128.6		147.4		146.7	
	OFFSET	-	133.6		135.1	-	137.0		125 0	
% ELONGA		L	13.0		13.0		137.0		135.0	
(INCHE		T	13.0		13.0	-	15.0		15.0	
% REDUCT		L			2370		13.0	-	13.0	
IN ARE	A	T				-				
BEND 105	_	L				_				
		T								
HARDNESS		1								
STATIC NO								-		
IMPACT		1								
ULTRASON	ıc									
BETA TRA	NSUS									
TEST FOR	E									
PROCE	URE									
			Producti	on Anneal	ed 1450°F 15 mir	nutes A	ir Cool.			
THER DA	TA									
								1		
HIPPED										
NO. OF PI	ECES	1	7			1		1		
WEIGHT			2533.0/4							
SIZE			.625 X 36	X 96						
TEST PIEC	ES									
		-						-		

FORM NO. 44 REV. 5/71

THIS IS TO CERTIFY THAT THE ABOVE TEST RESULTS ARE CORRECT AS CONTAINED IN THE RECORDS OF THE COMPANY.

SIGNED PROBLEM CONTAINED

APPENDIX F

ANALYSIS OF THE HIGH-LOAD-TRANSFER JOINT

Proposed MIL-STD-1312 Test 21 (Shear Joint Fatigue-Constant Amplitude) requires the use of bending restraints on high-load-transfer joints. The proposed test suggests two types of restraints—the flexure pivot/90-degree-offset and the sandwich type. The purpose of these restraints is to minimize the bending stresses from the joint and, hence, produce consistent joint failures originating near the fasteners.

Urzi* has shown that relatively thin $(t/D \sim 0.5)$ unrestrained joints may be subjected to combined bending and tensile stresses at the fay surface as much as 2.64 times greater than the nominal (P/A) tensile stress. He has also shown that the addition of restraints in the fastened area can reduce the maximum stress to as little as 1.18 times the nominal stress.

It was the intent of this phase of the program to conduct high-loadtransfer joint tests in a three-post 50-kip-capacity fatigue-test system. The majority of these joints were to be relatively thick (t/D \sim 1.5). It was believed that the sandwich-type restraint would be most practical because of the geometry of the system. When load was applied to the first specimen, it became apparent that although bending might have been reduced in the joint area, bending loads had been transferred to the load train. This observation was manifest in the form of extreme deflections (± 0.010 inch) of the hydraulic actuator when measured at the actuator-test frame platen location. Experience has shown that deflections at that location exceeding ± 0.003 inch will severely reduce actuator seal life. As a result, it was decided to attempt to stabilize the sandwich-type restraint by providing lateral support in the form of rollers (see Figure F-1). It was envisioned that the rollers could be adjusted laterally to reduce joint deflections while providing negligible friction loading.

Test Series 9 and 10 were conducted for the TaperLok and HiTigue fastener systems and although considerable time was expended adjusting the

^{*} Urzi, R. B., "Standardization of Fatigue Tests of Installed Fastener Systems", Lockheed-California Company Report LR25280, Naval Air Development Center Contract N62269-71-C-0450 (July, 1972).

FIGURE F-1. BENDING RESTRAINT SYSTEM AND STRAIN GAGE LOCATIONS

rollers for each specimen, actuator deflections were reduced to a level no greater than ± 0.0015 inch during cyclic loading. When Test Series 9 and 10 were completed and the data analyzed, a definite trend was observed. It was apparent that specimens subjected to high cyclic loads tended to fail at the fay surface at or near the fastener holes while low cyclic loads generally produced failures in the gross section near the edge of the lap. Considerable concern was expressed that these differing failure modes would cloud the analysis of fastener effects upon joint life and it was suspected that the restraint system was not adequately removing bending stresses.

A small experimental program was devised whereby electric strain gage versus applied load data could be obtained to evaluate the effectiveness of the restraint system. Strain gages with measuring elements 1/16 inch in length were applied to a high-load-transfer specimen as shown in Figure F-1. Applied load and measured strain data were obtained at loading increments up to 20 kips for the three test conditions of no restraint, sandwich restraint, and sandwich and roller restraint. The data for similar gage locations was averaged and is presented in regression curve-fitted form in Figure F-2. The analysis of Figure F-2 is discussed in the following paragraphs.

No Restraint

These data are very encouraging in that a linear relationship exists between the midthickness (tension only) gages and the fay surface (tension and bending) gages. In addition, the latter data show that the strains due to combined tension and bending are 2.58 times greater than those for tension only which compares well with the 2.64 relationship found by Urzi for similar conditions.

Sandwich Restraint

Data obtained with the sandwich restraint installed on the specimen provides some interesting observations. First, the strains at the fay surface are noted to be linear but greater in magnitude (approximately 6 percent) than the unrestrained case. Although part of the difference may be attributed to normal experimental errors, it is believed that the majority of the increase

FIGURE F-2. STRAIN GAGE RESULTS FOR HIGH-LOAD-TRANSFER JOINT

is attributable to the fact that the fay surface strain gages were placed in a small open area between the spacer plate and the joint end. It is possible that high lateral compressive loads could be applied to the joint surface near the gages (by the restraint) through the spacer. As a result, additional positive Poisson strains would be reflected in the load-strain data.

The second area of interest lies in the analysis of data taken at midthickness. It is apparent that strain data obtained at loads up to 10 kips are not linear. This indicates that some load is being transferred through the sandwich restraint instead of through the joint. In fact, the similarity in slope of the no-restraint and sandwich-restraint curves at high loads supports such a hypothesis. If the higher load portion of the curve is used to project a linearized curve, it is found that the projection intersects the fay-surface curve at a total strain magnitude nearly equivalent to that of the no-restraint curve when both are evaluated at the same load (say 20 kips).

Sandwich and Roller Restraint

As noted earlier, the rollers were added to reduce lateral motion of the joint and hydraulic actuator. This was accomplished by making lateral adjustments of the rollers at various load levels until the maximum lateral movement at all loads was less than \pm 0.002 inch. The final curves presented in Figure F-2 indicate the effect of the rollers on the strain state of the high-load-transfer joint.

It is apparent from the fay-surface curve that the adjustment of the rollers for minimum deflection imposes a bending moment or preload upon the joint at zero load. Bending in the joint has been substantially reduced as the strain excursion for the fay-surface curve is approximately 1500 $\mu\epsilon$ for the 20 kip load range as compared to approximately 1100 $\mu\epsilon$ for the unrestrained midthickness curve for the same range. However, the reduction in bending is completely overshadowed by the nonlinearity of the midthickness curve for this condition and the apparent bypass of approximately 30 percent of the applied load through the restraint system. This latter fact is evidenced by the approximate 750 $\mu\epsilon$ excursion of the sandwich and roller

restraint curve for a 20 kip load application as compared to an approximate $1100~\mu \varepsilon$ excursion for the no-restraint curve for the same load application.

Conclusions and Recommendations

As a result of the above analysis, it was determined that the restraint systems proposed for use in MIL-STD-1312, Test 21, will not adequately control bending in thick-joint specimens. Apparently, if bending is reduced measurably via a restraint system, considerable load is bypassed around the fastened area by the restraints. In addition, it is apparent that even the sandwich-type restraint bypasses some load around the joint, even at relatively low loads. Hence, two additional unknowns must enter the fatigue analysis of the single-lap high-load-transfer joint--the amount of bending in the joint and the amount of load transferred through the restraint system -- both functions of applied load. Both of these variables make it nearly impossible to access the effect of a given fastener system on the present high-load-transfer joint geometry. As a result, it is recommended that consideration be given to the development of a new high-load-transfer joint geometry which is either sufficiently symmetrical or adequately restrainable such that fastener effects on joint fatigue life can be assessed independent of joint thickness.

APPENDIX G

DATA ANALYSIS AND PLOTTING COMPUTER PROGRAM

| | 00072 105 FRINT | L0067 IF (EOF | 0.035 102 FEAD | 2.35 240 FORM
 | COURT READ | C.124 PRINT | u u u 2 3 I I = 1 | 0.322
J=1
 | 05321 I | 01317 98 CURV | 00016 III= | 03315 96 CURV
 | 33003 READ | 00003 18 FORM | 00003 16 FORM
 | 13003 14 FORMAT (A10) | 03003 13 FORM | 154.4,2X,17.4,4 X (SE.1)-///SUX, EMOINALEN! SIRESS ,95X, TRILOCE
FE*/) | R) U
 | EDDG3 12 FORM | 00363 10 FORM | 00003 8 FORM | 03303 6 FORM | DOG3 4 FORM
 | Macou C Maco | OCCOON COUNCING | Dado S INTE | U.DE3 REAL | ,71(51),72(51) | PROGRAM FA | | 00000000000000000000000000000000000000 | 8CL BCL BCL BCL BCL BCL BCL BCL BCL BCL B | |
--	---	--	--
--	--	--	--
--	---	--	
--	--	--	
---	--	--	--
--	--	--	
--	---	--	---
		00372 105 FRINT	00072 105 FRINT
 | 00.035 | 13,27 READ
3,435 240 FORMA
6,035 162 READ
6,067 165 FERN | C.)24 PRIN
C.)27 READ
C.)35 240 FORM
C.)35 162 READ
C.)667 165 FEIN | 11=1
10124 PRINI
10127 READ
10135 240 FORMA
10285 102 READ
1037 105 PRINI
 | 0.322 J=1
0.023 II=1
C.324 PRINI
C.327 READ
C.035 IG2 READ
C.035 IG2 READ
0.372 IG5 PRINI | 00022 J=1
00322 J=1
00023 J=1
C0124 PRINT
C0135 Z40 FOAM
C0035 162 READ
C0067 165 PRINT | 00321 98 CURV= 00321 1=1 00322 J=1 00322 J=1 00323 | 00016
 | 00015 96 CURV= 00117 98 CURV= 00121 | 00015 96 CURV= 00115 96 CURV= 00117 98 CURV= 00122 1=1 00122 1=1 00123 | 13003 18 FORM READ 13003 96 CURV-100117 98 CURV-100117 98 CURV-100122 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 | 05003 16 FORMS 05003 18 FORMS 05003 96 CURV- 05016 98 CURV- 05021 1=1 05022 1=1 05022 1=1 05022 1=1 05022 1=1 05022 1=1 05022 1=1 05022 1=1 05022 1=1 05022 1=1 05022 1=1 05022 1=1 05022 1=1 05022 1=1 05022 1=1 05022 1=1 05022 1=1 05022 1=1 05022 1=1 05023 1=1 05022 | 00003 16 FORMS 00003 16 FORMS 00003 18 FORMS 00003 18 FORMS 00015 96 CURV- 00017 11 = 1 | 03003 13 FORMS 05003 14 FORMS 05003 16 FORMS 05015 96 CURV- 05021 11 = 1 05021 1 | 2, F9.4, ZX, F7.4, TX (SEQ)*///ZUX, EQUIVALENT STRESS*, 5X, TRAILOUE 3 F E * /) 5 5 6 7 7 4, ZX, F T 5.6) 5 5 6 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8
 | 2, F9. 2, F9. 3, F9. 4, F9. 5, | 187 63 12 FORM 187 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 100 5 3 10 FORM 12 FORM 12 FORM 12 FORM 12 FORM 13 FE ** (1) 10 FORM 13 FORM 13 FORM 13 FORM 13 FORM 14 FORM 15 FORM 16 FORM 1 | 00963 8 FORM 00963 12 FORM 18 FORM 00963 12 FORM 00903 13 FORM 00903 14 FORM 00903 14 FORM 00915 96 CURV 00915 98 CURV 00957 240 FORM 00957 162 FORM 00957 165 FORM 00957 1 | 03903 6 FORM 003003 12 FORM 003003 12 FORM 003003 13 FORM 003003 14 FORM 003003 14 FORM 003003 16 FORM 00302 1 III | 00003 | 10 10 10 10 10 10 10 10 | 000033 | 000033 EXTE COMM COOR COOR COOR COOR COOR COOR COOR | 00003 |
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10 | 10003 10003 10003 10003 10003 10004 10003 1000 | F (EOF
RINT | 13 | 777 |
| 00003 | 00003 | 00003 | 0.0003 | 001003
 | 001003 | 001003 | 0.0003 | 0.0003
 | 0.0003 | 0.0003 EXTE
0.0003 EXTE
0.0003 EXTE
0.0003 EXTE
0.0003 EXTE
0.0003 EXTE
0.0003 10 FORM
0.0003 12 FORM
0.0003 14 FORM
0.0003 14 FORM
0.0003 14 FORM
0.0003 16 FORM
0.0003 16 FORM | 0.0003 EXTE
0.0003 EXTE
0.0003 EXTE
0.0003 EXTE
0.0003 EXTE
0.0003 EXTE
0.0003 EXTE
0.0003 10 FORM
0.0003 14 FORM
0.0003 14 FORM
0.0003 14 FORM
0.0003 16 FORM | 0.0003
 | 0.003 | 0.003 | 0.003
 | 0.003 | 0.003 | 0.0003 | 0.0003
 | 0.0003 | 0.0003 REAL
0.0003 EXTE
0.0003 COMM
0.0003 4 FORM
0.0003 6 FORM | 00003 REAL
00003 INTER
00003 COMM
00003 COMM
00003 COMM
00003 COMM | 00003 REAL
00003 INTE
00003 COMM
00003 COMM | 3, Z1(51), Z2(51) 0,003
 | 3, Z1(51), Z2(51) 0,003 REAL NRK, NF, M 0,003 INTEGER CURJ 0,003 EXTERNAL FUNC | 3,71(51),72(51)
00003 REAL NRR,NF,M
00003 INTEGER CURV | 3,71(51),72(51)
0,0003 REAL NRR,NF,M | 3,71(51),72(51) | | 2000 | DO003 DIME | 50) | 7 | |
| 2 (500) 2 (500) 2 (500) 2 (500) 3 (| 2 (50) 2 (50) 2 (50) 2 (50) 3 (51) 6 (50) 6 (50) 6 (50) 6 (50) 7 | 2 (50) 2 (50) 2 (50) 3 | 2 (250) 2 (| 2 (30) 2 (30) 2 (30) 2 (30) 3 (4) 2 (30) 3 (5) 2 (30) 3
(4) 2 (30) 3 (4) 2 (30) 3 (4) 2 (30) 3 (4) 2 (30) 3 (4) 2 (30) 3 (4) 3 | 2 (50) 2 (50) 2 (50) 2 (50) 3 (51) 3 | 2 (350) 2 (350) 2 (350) 3 (| 2 (30) 2 (30) 2 (30) 3 (4) 7 (2 | 2 (30) 2 (30) 2 (30) 2 (30) 3
(30) 3 | 2 (50) 2 (50) 2 (50) 3 (1) 4 (50) 6 (50) 6 (50) 6 (50) 6 (50) 6 (50) 6 (50) 7 (| 2 (50) 2 (50) 2 (50) 3 (1) 6 (50) 6 (50) 6 (50) 6 (50) 6 (50) 7 (| 17. X | 2 (50) 2 (50) 2 (50) 2 (50) 3 (51) 6 (50) 6 (50) 6 (50) 6 (50) 6 (50) 6 (50) 7
(50) 7 | 2 (50) 2 (50) 2 (50) 2 (50) 3 (51) 6 (50) 6 (50) 6 (50) 6 (50) 7 | 2 (50) 2 (50) 2 (50) 2 (50) 3 (5) 2 (5) 3 (5) 3 (5) 3 (5) 3 (5) 4 | 2 (50) 2 (50) 2 (50) 2 (50) 3 (50) 3 (50) 3 (50) 3 (50) 3 (50) 3 (50) 4 (50) 5
 | 2 (30) 2 (30) 2 (30) 2 (30) 3 (30) 3 (4) 5 (30) 3 (4) 5 (30) 3 (4) 5 (30 | 2 (30) 2 (30) 2 (30) 2 (30) 3 (31) 3 (4) 5 (30) 3 (4) 5 (30) 3 (4) 5 (30 | 17 17 17 17 17 17 17 17 17 17 17 17 17 1 | 17 17 X 2 (50) 2 (50) 2 (50) 3 2 (50) 4 (50) 3 6 (50) 4 (50) 3 (5
 | 17 *X | 17.X
2.50
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0.1003
0. | 17, X (| 17, X
2 (50)
2 (50)
3 21 (
3 21)
2 (50)
3 2 (50)
2 (50)
3 4 (50) | 0.003 REAL
0.003 REAL
0.003 EXTE
 | 0.0003 8.21 C | 0.003 REAL | 1),X
2 (50)
3,71 (
0,063 REAL | 2 (50) | (50) | | PROGRAM FA | IM | - | 2000 |
| PROG DIME | PROG PROG DIME | PROG PROG DIME | PROG
 DIME
 DIME
 | PROG PROG DIME | PROG DIME | PROG PROG DIME 1) + X L L L L L L L L L | PROG PROG DIME 1) + X L L L L L L L L L | PROG
DIME
1) *XC
2 (50)
2 (50)
3, 71 (
3, 71 (
3, 71 (
3, 71 (
3, 71 (
0, 10 3 | PROG DIME | PROG
DIME
1) *XC
2 (50)
3, 71 (
1) 4 (50)
0, 10 (3)
0, 10 | PROG
DIME
1) *XC
2 (50)
3, 71 (
1, 1053
3, 71 (
3, 71 (
1, 1053
1, 1053
1 | PROG PROG DIME | PROG DIME | PROG
 DIME
 DIME
 | PROG
 DIME
 DIME
 | PROG
1) *XC
2 (50) 2 (50) 2 (50) 2 (50) 3 (51) 6 (50) 6 | PROG
1) *X(
1) *X(
2 (50)
2 (50)
3 * 21 (
3 * 21 (
5 * 5 (
5 (
5 (
5 (
5 (
5 (
5 (
5 (| РКОG 10003 11) XC 2 (50) 2 (50) 3 71 (10003 4 FORM 00003 00003 10003 | PROG PROG DIME 11 12 12 13 13 13 13 13 | РКОG
20003
1) *XC
2 (50) *XC
2 (50) *XC
3 * Z1 C
0 0 0 0 3 | PROG PROG DIME | PROG DIME | PROG
DIME
1) *X(
2 (50)
3 (50)
3 (50)
0 0 0 0 3
0 0 0 0 3
0 0 0 0 3
0 0 0 0 3
0 0 0 0 | PR06
10003
11,000
2 (50)
2 (50)
3,71 (30)
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003
6,0003 | PROG
DIME
1) *X(
2 (50)
2 (50)
3 7 1 (
0 1 0 0 3 FAL | PROG
10003
11, X(
2 (50)
2 (50)
3, Z1 (
0,003
REAL | PROG
10003 DIME
1),X(
2(50)
2(50)
3,71(| PROG
30003 DIME
1),X(
2(50)
3,71 | 2 (50) | | | | | |
| 00003 | PROG DIME | PROG DIME | PROG DIME | 00003 DINE 00003 DINE 00003 B 2 2 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 00003 DINE 00003 DINE 00003 REAL 00003 12 FORM 00003 14 FORM 00003 14 FORM 00003 14 FORM 00003 16 FORM 000003 16 FORM 000003 16 FORM 000000000000000000000000000000000000 | DINE | PROG DINE | PROG DINE | PROG DIME | PROG DIME | PROG DIME | PROG
DIME
1) *X PE
2 (50)
3, 71 (
3, 71 (
3, 71 (
3, 71 (
3, 71 (
3, 71 (
1, 10 (| PROG
DINE
2 (30)
2 (30)
2 (30)
2 (30)
3 (21)
8 (21)
1 | PROG
DINE
2 500
2 500
2 500
3 714
2 500
3 714
EXTE
COMM
COUGS
COMM
COUGS
COMM
COUGS
COMM
COUGS
COMM
COUGS
COMM
COUGS
COMM
COUGS
COMM
COUGS
COMM
COUGS
COMM
COUGS
COMM
COUGS
COMM
COUGS
COMM
COUGS
COMM
COUGS
COMM
COUGS
COMM
COUGS
COMM
COUGS
COMM
COUGS
COMM
COUGS
COMM
COUGS
COMM
COUGS
COMM
COUGS
COMM
COUGS
COMM
COUGS
COMM
COUGS
COMM
COUGS
COMM
COUGS
COMM
COUGS
COMM
COUGS
COMM
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS
COUGS | PROG
DINE
2 (50)
2 (50)
2 (50)
2 (50)
3 (74)
2 (50)
3 (74)
8 (50)
6 (50)
6 (50)
6 (50)
7 (50)
7 (50)
8 (50)
8 (50)
8 (50)
8 (50)
8 (50)
8 (50)
9 | PROG
DINE
2 (50)
2 (50)
2 (50)
3 (71)
2 (50)
3 (71)
COUGS EXTE
COUGS EXTE
COUGS EXTE
COUGS EXTE
COUGS EXTE
COUGS EXTE
COUGS FORM
COUGS | PROG
DINE
2 (50)
2 (50)
2 (50)
3 (71)
2 (50)
3 (71)
2 (50)
3 (71)
2 (50)
3 (71)
2 (50)
3 (71)
3 (71)
5 (71)
5 (71)
6 (71)
6 (71)
7 (71) | PROG DIME DIME | PROG DIME | PROG DIME | PROG PROG PROG DIME PROG | PROG PROG DIME | PR06
10003
11) X (
2 (50)
2 (50)
2 (50)
3 (21)
6 (50)
6 (50)
6 (50)
6 (50)
7 (50)
7 (50)
7 (50)
8 (50) | PROG
DIME
1) X (
1) X (
2 (50)
2 (50)
3 21 (
6 54)
0 5 0 5 (50)
0 5 0 5 6 6 M | PROG
10003
11) X (
2 (50)
2 (50)
3 (21)
6 (50)
6 (50)
6 (50)
7 (50) | PROG
20003 DIME
1) *X(
2 (50)
2 (50)
3 7 1 (
0 0 0 0 3 REAL | PROG
30003 DIME
1),X(
2(50)
2(50)
3,71(| PROG
30003 DIME
1),X(
2(50) | 90003 DIME
1) • X(50) | | | | | |
| PROG DIME | PROG DIME | PROG
 DIME
 DIME
 | PROG
 DIME
 DIME
 | PROG DIME | PROG
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
100 | PROG
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
100 | PROG
2 (50)
2 (50)
2 (50)
2 (50)
3 , 21 (
3 , 21 (
6 , 20)
6 , 20 (
6 , 20 (
6 , 20 (
7 , 20 (
7 , 20 (
8 , 20 (
8 , 20 (
8 , 20 (
9 , 20 (| PROG
2 (50)
2 (50)
2 (50)
2 (50)
3, 21 (
3, 21 (
4 EAR
50003 | PROG
DIME
1) *XC
2 (50)
2 (50)
3, 71 (
3, 71 (
3, 71 (
3, 71 (
3, 71 (
0, 10 3 | PROG
DIME
1) *XC
2 (50)
3, 71 (
2 (50)
3, 71 (
3, 71 (
3, 71 (
3, 71 (
0, 10 3 | PROG
DIME
1) *XC
2 (50)
3, 71 (
2 (50)
3, 71 (
3, 71 (
3, 71 (
6 (50)
6 (50)
6 (50)
6 (50)
6 (50)
6 (50)
7 (50)
7 (50)
8 (50)
8 (50)
8 (50)
8 (50)
8 (50)
8 (50)
1 (50) | PROG
DIME
1) *X (2) (3) (3) (4) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5 | PROG
1) *X (| PROG
10003
11, XC
2 (50)
3, Z1 (
2 (50)
3, Z1 (
2 (50)
3, Z1 (
2 (50)
2 (50)
3, Z1 (
2 (50)
2 (50)
2 (50)
3 (50)
4 (50)
5 (50)
5 (50)
6 (50)
6 (50)
7 (50)
7 (50)
7 (50)
8 (50 | PROG
10003
11,4X
2 (50)
3,71
2 (50)
3,71
2 (50)
3,71
8 (50)
8 (50)
8 (60)
8 (60) | PROG
10003
11, XX
2,500
2,500
2,500
2,500
1,100
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1, | PROG
DIME
1) *XI
2 (50)
2 (50)
3 , 71 (
2 (50)
3 , 71 (
DJUD3 REAL
DJUD3 EXTE
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
COMM
CO | PROG
DIME
1) XC
2 (50)
3, Z1 (
0,003 | PROG
10003 DIME
1) XC
2 (50)
2 (50)
3, Z1 (
3, Z1 (
0 0 0 3 REAL
0 0 0 0 3 EXTE
0 0 0 0 3 COMM
0 0 0 0 0 0 COMM
0 0 0 0 0 0 COMM
0 0 0 0 0 COMM
0 0 0 0 0 COMM
0 0 0 0 COMM
0 0 0 0 COMM
0 COMM
0 COMM
0 COMM
0 COMM
0 COMM
0 COMM
0 COMM
0 | Р ROGG
2000 3 1) *X С
2 (50) 2 (50) 3 71 (
2 (50) 3 71 (
2 (50) 3 | PR06 20003 1) *X(1) *X(2 (50) 2 (50) 3 + 71 (| PR06
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
10003
100 | PROG
DIME
1) *X(
2 (50)
3 721 (
3 | PR06
10003 DIME
1) X (2 (50)
2 (50)
3 7 7 1 (3) 2 (50)
6 0 0 0 3 EXTE | PROG
DIME
1) *X(
1) *X(
2 (50)
3 7 21 (
0 10 5 3 REAL
DIJ 5 3 REAL
COMP | PR06
10003 DIME
1) X (
2 (50)
2 (50)
3, 71 (
0,003 REAL | PROG
10003 DIME
1),X(
2 (50)
3,71(
0.003 REAL | PROG
30003 DIM-
1),X(
2(50)
3,71 | PROG
30003 DIM-
1) 9X(| | | 901 901 901 901 901 901 901 901 901 901 | BCL | 70 |

603145		
1000		
741500		
000147	-	
uda153	1=11	
000154	60 TO 162	
000154		
30,156		
101157	M=3.50	
JU1161	A JG = C .	
00,162	00 130 I=1,N	
UB3163	SEQ(I) = (SMX(I) * (1	(1-R(I))**3.5)
00-173	X(I)=SEO(I)	
000174	AVG=AVG+X(I)	
30:176	Y (I) = ALOG19 (NF (I))	
UU3202	130 W(I)=1.u	
103200		
000210	REG1 (1,3,FL	JNC, N, W, Y, X, 1, AT, LT, B, YR, SSD, BS, S, IE)
007070	CALL ROUR (SOUTH)	0.01 0.02 KM
440000	12.0 12.0 12.1	1,42,611,1612,
13.262	Name of the state	
J00263	START=AVG	
003265	2(1)=3.	
uc 1266	.0	
063267	DO 210 I=1,41	
330270	220 VALUE = -Z(I)+3(1)+	+8(2)*START+8(3)*AL0G10(START)
00.301	DVAL=8(2)+8(3)/START	
00000	ACAIN ESTATIONALUE DIVAL	, UVAL
600300	A SF HABS IS I AKI - AGA	
30,310	START - ACATA	602.01
244	TADALIZATO	
033314	IF (ICOUNT - GT - 54) GO	10 175
000317	GO TO 220	
00,317	209 X(I)=AGAIN	1
063321	21(I)=Z(I) +F ACTOR	20
06:325	22(I)=2(I)-FACTOR*	
100.321	77=10-01-77	

21C CONTINUE IF (CURV. CALL QIK CALL QIK 1TRESS, KS CALL QLI CALL QLI CALL QLI CALL QLI CALL QLI 140 CALL QLI CALL QLI 140 CALL QLI 13=III DO 155 K III=IND (K III=IND (K IIII=IND (K IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	1343 2(1+1)=2(1+3):1 150000000000000000000000000000000000	001333	135	(I) x
21C COUNTEGE CONTINUE CALL QIKSET(9.6.3.0.6.5.7.0.0.0.10.0) CALL QIKSET(9.6.3.0.6.5.7.0.0.0.10.0) CALL QIKSET(9.6.3.0.6.5.7.0.0.0.10.0) TRESS, KSI*, 35H*EQUIVALENT DATA*) CALL QLINE (21.3.NN.1) CALL QLINE (22.X.NN.1) 140 CALL QLINE (22.X.NN.1) 140 CALL QLINE (22.X.NN.1) 152 III 00 155 K=1.J 10 0 156 K=1.J 11=INO (X)	21C IOCUNT=6 CAL QIKET(8, 6, 3, 0, 6, 5, 2, 0, 9, 10, 0) CAL QIKET(8, 6, 3, 0, 6, 5, 2, 0, 9, 10, 0) CAL QIKET(8, 6, 3, 0, 6, 5, 2, 0, 9, 10, 0) TRESS, KST*, 354FASTER FAITGUE IMPROVEMENT DATA*) CAL QLINE (21, 4, 11, 1) CAL QLINE (22, 4, 11, 1) CAL QLINE (22, 4, 11, 1) 140 CAL QLINE (22, 4, 11, 1) 140 CAL QLINE (22, 4, 11, 1) 151 IND (k) 152 II II II II II 154 CAL QLINE (2, 11, 11) 155 CAL QLINE (2, 11, 11) 156 FAD 14, 0H CK IFEOF, 51 F5, 160 160 BACKSPACE 5 CAL PLOT(9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	00343		11+
21C CONTRING CAL QIKSET (9.6.3.0.16.5).7.0.0.0.10.0) CAL QIKSET (9.6.3.0.16.5).7.0.0.0.10.0) CAL QIKSET (9.6.3.0.16.5).7.0.0.0.10.0) CAL QIKSET (2.7.N.N.).274*CYGLES TO FAILURE, LOGINF)*, 23H*EQUIVALENT ATESS, KSI*, 35H*FSTENER FATIGUE IMPROVE MENT DATA*) CAL QLINE (Z1.5.N.N.1) CAL QLINE (Z2.X.NN.1) CAL QLINE (Z2.X.NN.1) CAL QLINE (Z2.X.NN.1) CAL QLINE (Z.X.NN.1) CAL QLINE (Z.X.NN.1) III=IX+K IIIIIII SAQIII=IX-IIII CAL QLINE (Y.S.G.)-IIIII ISO BACKSPACE 5 CAL PLOT (9.0.0.03) GO TO 96 ITS CALL PLOT (9.1.0.03)	Z1C CANTING TO 1443 CAL QIKKET 8.6,3.0 0.5,7.0,0.0,10.0) CAL QIKKET 12.X,NN, 274*CVCLES TO FAILURE, LOGINF,*,234*EQUIVALENT LTAESS, KSI*, 354*FASTENER FAITGUE IMPROVEMENT DATA*) CAL QLINE (Z1,X,NN,1) CAL QLINE (Z2,X,NN,1) CAL QLINE (Z2,X,NN,1) CAL QLINE (Z2,X,NN,1) L15 I Jail II I Jail I Jail II I	34		
IF(CURV.GT.1)GO TO 140 CALL QIXEETTGS.G.3.0.0.6.5.7.0.0.0.10.0) CALL QIXETTGS.C.3.0.0.6.5.7.0.0.0.10.0) CALL QIXETTGS.C.3.0.0.6.5.7.0.0.0.10.0) TRESS.KSI*, 35H*FASTENER FATIGUE IMPROVEMENT DATA*) CALL QLINE (21.5.*NN.1) CALL QLINE (22.5.*NN.1) CALL QLINE (32.5.*NN.1) CALL QLINE (42.5.*O.*O.*O.*O.*O.*O.*O.*O.*O.*O.*O.*O.*O.	IFCURN.GT.11.60 TO 1440 CALL QIKSET9.6.5.7.0.0.6.7.0.0.0.10.0) CALL QIKSET9.6.5.3.0.6.5.7.0.0.0.10.0) CALL QIKSET9.6.7.0.0.6.5.7.0.0.0.10.0) TRESS.KSI*, 5H*FASTENER FATIGUE IMPROVEHENT DATA*) CALL PLOT (-3.6.1.63) CALL QLINE (2.2.x.NN.1) III = 13 + K	0034	210	
CALL QIKSET(8, 6, 3, 0, 0, 5, 7, 0, 0, 0, 0, 0, 0) (ALL QIKSET(8, 6, 3, 0, 0, 5, 7, 0, 0, 0, 0, 0, 0, 0) (ALL QIKPLITZ, x, NN, 27H+CYCLES TO FAILURE, LOG(NF)*, 23H+EQUI/ALENT (ALL DLINE (21, 0, -3) (ALL QLINE (21, x, NN, 1) (CALL QLINE (22, x, NN, 1) (CALL QLINE (32, 1, 0) (CALL QLINE (32, 1, 0) (CALL QLINE (32, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	CALL QIKSET(9.6,3.0,6.5,7.0,0.9,10.0) 1 TAESS, KSI*, 55H*FASIENER FAILGUE IMPROVEMENT DATA*) CALL QIKINIT(Z,X,NN,27) CALL QLINE (Z1,X,NN,1) CALL QLINE (Z2,X,NN,1) CALL QLINE (Z2,X,NN,1) 14.5	2035		JRV. GT.11
TAESS, KSI*, 35H*FASTENER FATIGUE IMPROVEMENT DATA*) TAESS, KSI*, 35H*FASTENER FATIGUE IMPROVEMENT DATA*) CALL PLOT (-9, (-1, 1, 1, -3))	TRESS,KSI*, 35H*FASTENER FATIGUE IMPROVEMENT DATA*) TRESS,KSI*, 35H*FASTENER FATIGUE IMPROVEMENT DATA*) CALL QLINE(19.13.04.3)	3335		QIKSET (8
178555,KS1*,55 CALL PLOT (-9. CALL QLINE (Z.) CALL QLINE (Z.) 140 CALL QLINE (Z.) 145 I2=0 I3=III DO 155 K=1,J III=I3+K I1=IND (K) I1=I3+K I1=IND (K) I1=I3+K I1=IND (K) I2=I2+I1 DO 155 K=1,J IN=IND (K) I2=I2+I1 DO 155 K=1,J IN=IND (K) INID (K) INID (K) INID (K) INID (K) INID (K) INID (178-55, KS1*, 55 CAL PLOT (-9, CALL QLINE (Z) GALL QLINE (Z) 140 CALL QLINE (Z, 145 IZ=0 I3=III DO 155 K=1,J III=I3+K I1=IND (K) I2=IZ+11 DO 155 K=1,J IX=IX-IX-IX-IX-IX-IX-IX-IX-IX-IX-IX-IX-IX-I	U 3 3 6		CALL QIKPLT(Z,X,NN,27H*CYCLES TO FAILURE, LOG(NF)*, 23H*EQUIVALENT
CALL PLOT (-9. CALL QLINE (Z2. CALL QLINE (Z2. GO TO 145 GO TO 145 I45 I2-6 I3=III DO 155 K=1,J III=I3+K I1=IND (K) I2=I2+I1 DO 155 K=1,J III=I3+K I1=IND (K) I2=I2+I1 CO 155 K=1,J IX=I2+I1 DO 155 K=1,J IX=I2+I1 IX=I2+I1 IX=I2+I1 IX=I2+I1 IX=I2+I1 IX=I2+I1 IX=I2+I2 IX=I2+I2+I2 IX=I2+I2+I2 IX=I2+I2+I2 IX=I2+I2+I2 IX=I2+I2+I2+I2 IX=I2+I2+I2+I2+I2+I2+I2+I2+I2+I2+I2+I2+I2+I	CALL PLOT (-9. CALL QLINE (ZZ) CALL QLINE (ZZ) GO TO 145 145 IZ=0 I3=III DO 155 K=1,J III=I3+K I1=IND (K) I2=IZ+11 DO 155 K=1,J IX=IZ+0 IX=IZ+0 IX=IZ+0 IX=IZ+0 IX=IZ+1			TRESS, KSI . 35
CALL CALL CALL 140 CALL 145 I2=0 I3=II I1=1 I1=IN I1=IN I1=IN I2=IZ	CALL COALL COALL 145 CALL 150 CALL 150 CALL CALL CALL CALL CALL COALL CO	36364		PLOT (-9.
140 CALL 160 TCALL 145 CALL 13=11 10 10 15 11=1N	CALL 140 CALL 141 CALL 145 CALL 150 SEQ (11=1N 150 SEQ (11=1N 150 SEQ (11=1N 155 CALL 160 BACKS 170 BACKS 177 BACKS 177 CALL CALL CALL CALL CALL	00367	****	OLINE (21,
140 CALL 145 CALL 13=11 13=11 11=11 11=11 11=11 11=12 12=12 13=12 14=12 14=12 15=12 15=12 16=	140 CALL 145 I 2=0 13=10 10 15 11=1N 11=1N 11=1N 12=12 10 15 12=12 10 15 12=12 13=10 14=10 15=12 16	0.372		QLINE (22,
140 CALL 145 I2=0 13=II 13=II 10-15 I1=II II I1=II II	140 CALL 145 I2=0 13=II 10 15 11=1 11=1 11=1 12=12 12=12 12=12 13=11 14=1 15=12 16=12	03375		60 T0 145
145 12=0 13=11 13=11 11=1 11=1 11=1 12=12 12=12 12=12 140 155 CALL 150 SEQUITE 150 CALL 160 BACKS 170 BACKS 170 BACKS	145 12=0 13=11 10 15=11 11=1 11=1 11=1 12=12 12=12 155 CALL 155 CALL 160 BACKS 160 BACKS 160 FEAD 170 BACKS 170 BACKS	03376	1	CALL QLINE (Z, X, NN, 1)
13= II 100 15 100 15 11= IN 11= IN 12= IZ 12= IZ 155 CALL 160 BACKS 160 BACKS 160 FEAD 165 FEAD 170 BACKS 170 BACKS 170 BACKS	13= II 100 15 100 15 11= IN 11= IN 12= I2 12= I2 15= CALL 160 BACKS 160 COLL 170 BACKS 170 BACKS 170 BACKS 170 BACKS 171 BACKS 171 BACKS	03401		12=6
111 11 11 11 11 11 11 11	111 11 11 11 11 11 11 11	03462	1	13=111
111=1 11=1N	111=1 11=1N	40400		DO 155 K=1,J
11=1N 12=12 100 15 100 15 100 155 CALL 160 BACKS 160 TC 165 FEAD 170 BACKS 170 BACKS 170 CALL CALL	11=1N 12=12 100 15=12 15-12 15-13 15-13 16-13 16-13 16-13 16-13 17	03405		I II = I 3 + K
15-12 15-12 15-12 15-13 15	15-12 15-12 15-12 15-13 15-13 15-13 15-13 15-13 15-13 15-13 16-13 16-13 17	73460		I 1 = IND (K)
150 56(1) 150 86(1) 155 CALL 155 CALL 160 BACKS 165 FEAD 170 BACK CALL 171 BACK CALL 171 BACK CALL 175 CALL	150 SEQ (1) 150 SEQ (1) 155 CALL 160 BACKS 165 FEAD 170 BACK CALL CALL CALL CALL CALL	60413		I 2= I2+I1
150 Y(I)= 150 SEQ(I)= 155 CALL 160 BACKS 160 TC 165 FEAD 170 BACK CALL 60 TC	150 Y(I)= 150 SEQ(I)= 155 CALL 160 BACKS 160 BACKS 165 FEAD 170 BACKS CALL CALL CALL CALL CALL CALL CALL	00412		00 156 1=1,11
150 SEQ(1 155 CALL READ 160 BACKS 160 TO 165 FEAD 170 BACK CALL CALL	150 SEQ(1 155 CALL 160 READ 160 TC 160 TC 170 BACKS 170 BACKS 171 BACKS	00413		Y (I) =Y (I2-I1+I)
155 CALL READ 160 BACKS 60 TO 165 FEAD 170 BACKS 60 TO 175 CALL	155 CALL READ 160 BACKS 165 FEAD 170 BACKS 170 BACKS 175 CALL	00417	20	SEQ(I) = SEO(I2-I1+I)
READ 14, CHECK IF(EOF,5)165, 160 BACKSPACE 5 60 TO 98 165 FEAD 14, CHECK IF(EOF,5)175, 170 BACKSPACE 5 CALL PLOT(9.0 60 TO 96	READ 14, CHECK IF(EOF,5)165, 160 BACKSPACE 5 60 TO 98 165 FEAD 14, CHECK IF(EOF,5)175, 170 BACKSPACE 5 CALL PLOT(9.0	17454	22	CALL QLINE (Y, SEQ, -11, III)
160 BACKSPACE 5 60 T0 98 165 FEAD 14, CHECK 170 BACKSPACE 5 CALL PLOT (9.0 60 T0 96	160 BACKSPACE 5 60 T0 98 165 FEAD 14, CHECK 170 BACKSPACE 5 60 T0 96 175 CALL PLOT (9.0	03433		READ 14, CHECK
160 BACKSPACE 5 60 TO 98 165 FEAD 14, CHECK 170 BACKSPACE 5 CALL PLOT (9.0 60 TO 96	160 BACKSPACE 5 60 T0 98 165 FEAD 14, CHECK 170 BACKSPACE 5 CALL PLOT (9.0 60 T0 96	10440		IF(EOF,5)165,160
165 FEAD 14, CHECK IFFEOF, 5) 175, 170 BACKSPACE 5 CALL PLOT (9, 0 60 TO 96	60 TO 98 165 FEAD 14, CHECK IFFEOF, 5)175, 170 BACKSPACE 5 CALL PLOT (9.0 60 TO 96	2443	9	PACE
165 FEAD 14, CHECK 170 BACKSPACE 5 CALL PLOT (9.0 60 TO 96	165 FEAD 14, CHECK IFFEOF, 5)175, 170 BACKSPACE 5 CALL PLOT (9.0 60 T0 96 175 CALL PLOT (9.1	54+0		60 T0 98
454 IF(EOF,5)175, 457 170 BACKSPACE 5 461 CALL PLOT(9.0 464 GO TO 96 465 175 CALL PLOT(9.1	454 IF(EOF,5)175, 457 170 BACKSPACE 5 461 CALL PLOT(9.0 464 60 TO 96 465 175 CALL PLOT(9.1	0440	165	EAD 14, CHECK
457 170 BACKSPACE 5 461 CALL PLOT (9.0 464 GO TO 96 465 175 CALL PLOT (9.1	457 170 BACKSPACE 5 461 CALL PLOT(9.0 464 GO TO 96 465 175 CALL PLOT(9.1	+5		IF(EOF, 5) 175, 170
461 CALL PLOT (9.0) 464 GO TO 96 465 175 CALL PLOT (9.1)	461 CALL PLOT (9.0 t64 65 175 CALL PLOT (9.1	45	170	
464 60 TO 96 465 175 CALL PLOT (9.1	464 GO TO 96 465 175 CALL PLOT (9.J	94		
465 175 CALL PLOT (9.1	465 175 CALL PLOT (9.J	94		10
		10	1	ALL PLOT (9. J
		02450		
T IGON 3 LIAD	CAL	03471		1
CALL ENDPLT CALL EXIT END		-		

STATEMENT ASSIGNMENTS STATEMENT ASSIGNMENTS 10		005372									
EHENT ASSIGNMENTS - 0.0555	FUNCTION ASSIGNMENTS									The state of the s	
- 0.0525 4 - 000510 6 - 0.0515 8 - 0.0550 - 0.0525 12 - 000534 13 - 000155 14 - 000356 - 0.01562 105 - 0.0576 108 - 0.01164 110 - 0.0127 - 0.01447 124 - 0.05154 135 - 0.01313 140 - 0.01376 - 0.01447 124 - 0.01544 135 - 0.01546 170 - 0.01376 - 0.01447 124 - 0.01544 175 - 0.01546 170 - 0.01572 - 0.01526 8 - 0.01517 520 - 0.01574 170 - 0.01577 - 0.02216 B - 0.01531 8S - 0.01534 CHECK - 0.02223 - 0.02216 DVAL - 0.02214 FACTOR - 0.02173 AT - 0.02203 - 0.02167 III - 0.02214 FACTOR - 0.01574 FORM - 0.02217 - 0.02167 III - 0.02214 FACTOR - 0.01576 III - 0.02203 - 0.02167 III - 0.02214 FACTOR - 0.01577 FORM - 0.02203 - 0.02167 III - 0.02214 FACTOR - 0.01175 NUM - 0.02203 - 0.02167 III - 0.02214 III - 0.02214 III - 0.02215 - 0.01537 WN - 0.02216 IV - 0.01175 NUM - 0.02203 - 0.014401 SO - 0.02217 IV - 0.01175 VALUE - 0.02173 - 0.014401 III - 0.02200 IV - 0.01175 VALUE - 0.02173 - 0.014401 III - 0.02200 IV - 0.01175 VALUE - 0.02173 - 0.014401 III - 0.01240 IV - 0.01341 IV - 0.01643 - 0.01726 - 0.01344 IV - 0.01444 IV - 0.01341 IV - 0.01643	ATEMENT ASSIGNMENTS										
- 0.0525 12 - 0.00534 13 - 0.00555 14 - 0.00560	- 000505 4		0	0.5	9	1	051	80		25	
- 0.01952 18 - 0.0564 96 - 0.00015 98 - 0.00127	- 0.0525 1	2		0 5	13	1	055	14		26	
- 001035 105 - 000154 135 - 000313 140 - 001376 - 00446 170 - 001376 - 00446 170 - 001376 - 00446 170 - 001376 - 00446 170 - 001477 120 - 001371 120 - 001377 120 - 001477 120 - 001477 120 - 001477 120 - 001371 120 - 001371 120 - 001477 120	- 000562 1	80		5	96		001	98		01	
NAMES AND LENGTHS	- 001035 1	05		00	108		116	110		12	
NAMES AND LENGTHS	- 0.0147 1	20		0.1	135	1	033	140		37	
NAMES AND LENGTHS	- 003401 1	90		70	165		7 7 0	170	•	45	
ABLE AND LENGTHS	- 000465 2	60		0.3	220		027	240		25	
ABLE ASSIGNMENTS ABLE ASSIGNMENTS AGAIN - 002215 ALLOY - 002173 AT - 061507 - 0.2216 B - 002214 FACTOR - 002170 CHECK - 062223 - 0.2216 DVAL - 002214 FACTOR - 002170 FORM - 62174 - 002167 III - 002164 IND - 061624 II - 062204 - 002167 III - 002164 IND - 061624 II - 062207 - 0.2216 III - 00221 J - 00216 K - 002207 - 0.2216 III - 00221 NR - 00216 K - 002207 - 0.02157 NN - 00221 NR - 002175 NUM - 002201 - 0.02157 NN - 00221 RS - 002207 S - 001537 - 0.2211 STRESS - 62162 TK - 011113 TOD - 602171 - 0.2211 STRESS - 62162 TK - 011113 TOD - 602171 - 0.01726 - 0.01727 - 0.01726 - 0.01726 - 0.01726 - 0.01727 - 0.01726 - 0.01727 - 0.01726 - 0.01727 - 0.01727 - 0.01727 - 0.01726 - 0.01727 -	K NAMES AND	HS									
ABLE ASSIGNMENTS - 0.2216 AGAIN - 0.02215 ALLOY - 0.02173 AT - 0.01507 - 0.2216 B - 0.01531 BS - 0.01534 CHECK - 0.02223 - 0.216C DVAL - 0.02214 FACTOR - 0.02170 FORM - 0.02204 - 0.02167 III - 0.0214 III - 0.02204 - 0.02167 III - 0.02164 III - 0.02204 - 0.02163 LT - 0.02214 RCOMP - 0.01524 II - 0.02204 - 0.01537 NN - 0.02214 RCOMP - 0.02166 R - 0.02201 - 0.01031 RCOMP - 0.02214 NN - 0.02167 - 0.01031 RCOMP - 0.02161 RS - 0.02207 - 0.01031 RCOMP - 0.02161 RS - 0.02207 - 0.01031 RCOMP - 0.02161 RS - 0.02207 - 0.01031 RCOMP - 0.02174 RCOMP - 0.02177 - 0.020747 SPEC - 0.04654 SSO - 0.02213 - 0.01144C01 HIDTH - 0.02200 X - 0.01341 Y - 0.02137 - 0.01726 T OF CONSTANTS - 0.01726 - 0.01726	- 300226										
- 0.2216	THE ANDLOWENT						The second secon				
- LUZIGO B - COLIGINA - COLIGINA - COLIGINA - CULLO B -	- 0 2216			62215	VO 1 14		217	ΔT		C	
- 60216	2000	1	5 6	01531	מעמ		111	CHECK		20	
- 00.745 I - 00.2165 IDOUNT - 00.2212 IE - 00.2204 - 00.2167 III - 00.2164 IND - 00.1624 II - 00.2172 T - 00.2163 LT - 00.221 J - 0.2166 K - 0.2172 - 00.2163 LT - 00.221 NN - 00.2157 N - 00.2172 - 00.1031 RCOMP - 00.221 NR - 0.1175 NUM - 0.05201 R - 00.2031 SO - 00.2207 S - 0.0177 - 00.2011 SO - 00.2207 S - 0.0177 - 00.2014 SMX - 0.0777 SPEC - 00.054 SSO - 0.2177 - 00.2014 CO1 MIDTH - 0.2200 X - 0.1113 TOD - 0.2171 - 00.06201 Z - 0.1424 ZZ - 0.2175 VALUE - 0.20171 - 00.06201 Z - 0.1424 ZZ - 0.2217 Z1 - 0.1043 T OF CONSTANTS	1.216		ے د	12214	FACTOR	1	217	FORM		1	
- 052167 III - C92164 IND - 061624 II - 062222	- 000.745		1	12165	TNOOT		221	IÈ		0	
- Cu222U I3 - CU222I J - D32166 K - D42172 - D02163 LT - D0152U M - D42157 N - D42201 - CU1257 NN - D422U NRR - D41175 NUM - D45201 - D4031 RCOMP - C02161 RS - D42207 S - D41577 - D402011 SD - CD2205 SEQ - D41542 SIZE - U2177 - CC2074 SMX - D40747 SPEC - D40654 SSD - G62233 - U2211 STRESS - G62162 TK - D41113 TOD - G62233 - D40144C01 MIDTH - G42200 X - D41114 Y - D410000 - D41726 - D41726 - C41424 ZZ - D62217 Z1 - G41643	052167		. u	02164	ONH		162	11	1	2	
- 002163 LT - 00152L MR - 062157 N - 062201 - 601257 NN - 00221L NRR - 061175 NUM - 06537 - 602011 SO - 602161 RS - 06227 S - 601537 - 602011 SO - 602265 SEQ - 061542 SIZE - 602177 - 602074 SMX - 090747 SPEC - 060654 SSO - 66223 - 602074 SMX - 090747 SPEC - 060654 SSO - 66223 - 602174 SMX - 090747 SPEC - 060654 SSO - 662171 - 602074 SMX - 090747 SPEC - 060654 SSO - 66223 - 602174 SMX - 091777 SPEC - 060654 SSO - 662171 - 602074 SMX - 061113 TOD - 692171 - 0011756 - 602176 IVS - 061341 Y - 6030060 - 0010766 SEQ - 062177 Z1 - 601643 - 001726 - 601728 SEQ - 062217 Z1 - 601643	C. 222L		3	62221	· ·		216	¥		1	
- C01257 NN - 00221L NRR - 001175 NUM - 00J663 - 00J031 RCOMP - C02161 RS - 0C2207 S - 001537 - C02011 SO - C02265 SEQ - 0C1542 SIZE - C2177 - C02074 SMX - 0J0747 SPEC - 000654 SSO - C0223 - U_2211 STRESS - C02162 TK - 0L1113 TOD - C02171 - C02246 TUS - G02176 TYS - 0_2175 VALUE - G02171 - 00J062C01 Z - C01424 ZZ - 0C2217 Z1 - G01643 - 00J726 - OUTZ6 - OUT	002163			01526	T	1	215	z	1	20	
- 031031 RCOMP - 002161 RS - 012207 S - 001537 - 002011 SO - 002205 SEQ - 01542 SIZE - 02177 - 012074 SMX - 030747 SPEC - 000654 SSO - 012233 - 012217 TO - 012233 - 012217 TO - 02217 TO - 011726 - 011726 TYS - 012217 TO - 011643 - 011726 TYS - 012217 TO - 011643 - 011726 TYS - 012217 TO - 011643 - 011726 TYS - 011726 TYS - 011643 - 011726 TYS - 011726 TYS - 011643 - 011726 TYS - 011643 - 011726 TYS - 011643 - 011726 TYS - 011727	601257	1	0	02216	NZR	1	117	NON		90	
- 602011 SO - C02205 SEQ - 001542 SIZE - 602177	- 001031		٥	02161	RS		220	S	•	33	
- 002074 SMX - 030747 SPEC - 000654 SSO - 602233 - 02211 STRESS - 602162 TK - 01113 TOD - 602171 - 002236 TUS - 602176 TYS - 02175 VALUE - 602213 - 00144C01 MIDTH - 602200 X - 061341 Y - 6030000 - 00106201 Z - C01424 ZZ - 0C2217 Z1 - 601643 - 001726 - 001726 - 0 TEMPORARIES	- 60 2011		٥	02205	SEQ		154	SIZE	•	1	
- 60221 STRESS - 602162 TK - 001113 TOD - 602171 - 602215 TVS - 002175 VALUE - 602213 - 602176 TYS - 002175 VALUE - 602213 - 6016420 TVS - 001341 Y - 60300000 TVS - 001726 - 601424 TVS - 002217 TVS - 001643 - 601643 - 601726 TVS - 601643 - 601726 TEMPORARIES	- 002014		0	24200	SPEC	•	165	SSD		53	
- C02236 TUS - G02176 TYS - G02175 VALUE - G02213 - 060144601 MIDTH - G02200 X - 061341 Y - G0300060 - 06.062631 Z - C61424 ZZ - G62217 Z1 - G01643 - 00.1726 - O0.1726 - OF CONSTANTS - OF TEMPORARIES	- bu 2211	S	_	02162	¥		111	TOD		17	
- 000144C01 HIDTH - 602200 X - 061341 Y - 60300060 - 00.062631 Z - C61424 ZZ - 062217 Z1 - 601643 - 001726 - 001726 - 00 TEMPORARIES	CC 2216		G	02176	TYS	•	217	VALUE		17	
- 00,062031 Z - C01424 ZZ - 0C2217 Z1 - G0164 - 001726 OF CONSTANTS - 00 TEMPORARIES	000144001		د	02200	×		134	*		00000	
0 0 0 0	00.062031		٥	01424		1	221	71		10	
0 F C	00										
+ 0 F T	OF CON								ì		
OF T									i		
	DF T										

003007 Litalion XINXY,FINF) 003007 Litalion Lital		NSION X(NX),F(NF) =1.6 =X(1)
F(2)=X(1) F(3)=ALOG1J(X(1)) F(3)=ALOG1J(X(1)) FEIDRN END C THIS SUBROUTINE CALCULATES THE STANDARD DEVIATION THIS SUBROUTINE CALCULATES THE STANDARD DEVIATION COMMON Y,YREG'SU',W(5G) A=N-1 TL=.0 TL		
F(3)=ALOG1J(X(1)) RETURN END C THIS SUBROUTINE CALCULATES THE STANDARD DEVIATION C STAITSTIC FOR A PARTICULAR SET OF REGRESSED DATA DIALNSION Y,YREG,M A=N-1 TL=0.0 TLD=0.0 SUM=0.0 DO 1C I=1,n TL=0.0 TLD=Y(I)+TL TL=Y(I)+TL TL=Y(I)		The state of the s
END SUBROUTINE RSQR(SSD,N,SD,TSS,R) THIS SUBROUTINE CALCULATES THE STANDARD DEVIATION C THIS SUBROUTINE CALCULARE SET OF REGRESSED DATA DIALNSION Y(5J),YREG(5G),W(5G) COMMON Y,YREG,W A=N-1 TL=.0 TL=.0 SUB-C.0 TO = 1, N TID = 1, N TENH = (ABS Y(I) - YEEG (I)) ** *2.0) * W(I) TENH = (ABS Y(I) - YEEG (I)) ** *2.0) * W(I) TES = TID - (TL** *2.0) * N RETURN END		L0613 (X
SUBROUTINE RSOR(SSD.N.SD.TSS.R) C THIS SUBROUTINE CALCULATES THE STANDARD DEVIATION C STATISTIC FOR A PARTICULAR SET OF REGRESSED DATA DIALNSION Y(5J),YREG(5D),W(5G) COMMON Y,YREG,W AN-1 TL=v.6 TLD=v.0 SUH=0.0 SUH=0.0 SUH=0.0 SUH=0.0 SUH=SUH+TERH SUBS(Y(I)-YREG(I))**2.0)*W(I) TSS=TIO-(TL*2.0)/N FETURN FETURN FETURN END	0.00	KN.
SUBROUTINE RSQR(SSD,N,SD,TSS,R) C THIS SUBROUTINE CALCULATES THE STANDARD DEVIATION C STATISTIC FOR A PARTICULAR SET OF REGRESSED DATA DIMENSION Y(5J),YREG(5G),W(5G) COMMON Y,YREG,W A=L.0 TID=J.0 TID=J.0 TID=Y(I)**2.J+TID TID=Y(I)**2.J+TID TCRM=(ABS(Y(I)-YREG(I))**2.D)*W(I) TCRM=(ABS(Y(I)-YREG(I))**2.D)*W(I) TSS=TID-(TL**2.C)/N R=(1.0-SUM/TSS)*100.0 END		
C STATISTIC FOR A PARTICULAR SET OF REGRESSED DATA DIMENSION Y(5J),YREG(50),W(5G) COMMON Y,YREG,W A=N-1 TL=v.6 TID=J.0 SUM=J.0 SUM=J.0 SUM=J.0 SUM=J.0 TL=Y(I)+TL TC=Y(I)+TL T		SQR(SSD,N,SD,TSS,R)
DIMENSION Y (5J), YREG (50), W (5G) COMMON Y, YREG, W A = L - 0 TL = L - 0 TL = L - 0 TL = L - 0 SUM = G - 0 SUM = SUM + TERM SD = SUM + TERM END END	-	INE CALCULATES THE STANDARD DEVIATION
COMMON Y, YRE A=N-1 TLE.0 TLD=0.0 SUM=0.0 DO 1C I=1." TLD=Y(I)+TL TLD=Y(I)+TL TCRM=(ABS(Y) 10 SUM=SUM+TERM SD=SORT(SUM/TERM SD=SORT(SUM/TERM FETURN END END	U	A PARTICULAR SET
COMMON Y, YR. A=N-1 TL= 0.0 TD= 0.0 SUM= 0.0 SUM= 0.0 TD= Y (I) + TL TD= Y (I) + TL TC= Y (I) + TL TC		NSION Y (50), VREG (50), W (56)
TL=L.0 TL=L.0 TLD=0 SUM=0.0 DO 1C I=1," TID=Y (I) +TL TERM= (ABS (YI 10 SUM=SUM+TERM SUM=SUM+TERM SUM=SUM+TERM TSS=TID-(TL* RETURN END		Y, YRIG, W
11=0.0 110=0.0 SUN=0.0 SUN=0.0 10 10 1=1, m 110=Y(1)+TL TERN=(ABS(Y(Y(SUN))+TERN=(ABS(Y(Y(SUN))+TERN))+TERN SUN=SUN+TERN SUN=SUN+TERN TSS=TID-(TL* RE(1.0-SUN)TERN RE(1.0-SUN)TERN RE(1.0-SUN)TERN		N c
10 5.0 20M = 0.0 10 T I I I I I I I I I I I I I I I I I I		٠
SUM=6.0 DO 10 I=1," TID=Y(I)++2. TL=Y(I)+TL TERM= (ABS(Y(I) NATE NATE NATE NATE NATE NATE NATE NATE		0.00
10 10 17 13 **2* TL=Y(I) **2* TL=Y(I) **2* TERH=(ABS(Y(I) **2*) SUH=SUH+TERH SUH=SUH+TERH SUH=SUH/TERH TS=TID-(TL* RE(1.0-SUH/TERH END		0.00
110=Y(I) **2. TL=Y(I) *TL TERM= ABS(YY 10 SUM=SUM+TERM SO= SORT(SUM/ TSS=TIO-(TL* RE(1.0-SUM/T RETURN END		16 I=1,n
10 SUM=SUM+TERM 50=SORT(SUM-TERM 50=SORT(SUM-TERM 15S=TIO-(TL- R=(1.0-SUM/T RETURN END		= Y (I) ** 2.3 + TID
10 SUM=SUM+TERM SUM=SUM+TERM SD=SQRT(SUM/ TSS=TIO-(TL* R=(1.0-SUM/T RETURN END		Y(I)+TL
10 SUM=SUM+TER) SU=SORT(SUM) TSS=TID-(TL*) R=(1.0-SUM) RETURN END		H= (ABS(Y(I)-YREG(I))**2.0)*W(I)
SD=SQRT(SUM) TSS=TID-(TL') R=(1.0-SUM) RETURN END	10	=SUM+TERM
TSS=TID-(TL'RE(1.0-SUM/) RETURN END		SORT(SUM/A)
R=(1.0-SUM/) RETURN END		=1ID-(1L**2.0)/N
		1.0-SUM/TSS)*100.0
		JRN